Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 077102    DOI: 10.1088/1674-1056/abfa05

Electronic structures of vacancies in Co3Sn2S2

Yuxiang Gao(高于翔)1, Xin Jin(金鑫)1, Yixuan Gao(高艺璇)1, Yu-Yang Zhang(张余洋)1,2,†, and Shixuan Du(杜世萱)1,2,3,4,‡
1 Institute of Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China;
2 CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China;
3 Beijing National Center for Condensed Matter Physics, Beijing 100190, China;
4 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  Co3Sn2S2 has attracted a lot of attention for its multiple novel physical properties, including topological nontrivial surface states, anomalous Hall effect, and anomalous Nernst effect. Vacancies, which play important roles in functional materials, have attracted increasing research attention. In this paper, by using density functional theory calculations, we first obtain band structures and magnetic moments of Co3Sn2S2 with exchange-correlation functionals at different levels. It is found that the generalized gradient approximation gives the positions of Weyl points consistent with experiments in bulk Co3Sn2S2. We then investigate the electronic structures of defects on surfaces with S and Sn terminations which have been observed in experiments. The results show that the single sulfur vacancy on the S-terminated surface introduces localized bond states inside the bandgap near the Fermi level. For di- and tri-sulfur vacancies, the localized defect states hybridize with neighboring ones, forming bonding states as well as anti-bonding states. The Sn vacancy on the Sn-terminated surface also introduces localized bond states, which are merged with the valence bands. These results provide a reference for future experimental investigations of vacancies in Co3Sn2S2.
Keywords:  first-principle calculations      vacancies      localized bound states      orbital hybridization  
Received:  24 February 2021      Revised:  17 April 2021      Accepted manuscript online:  21 April 2021
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  61.72.jd (Vacancies)  
  71.55.Ak (Metals, semimetals, and alloys)  
  71.70.-d (Level splitting and interactions)  
Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2019YFA0308500 and 2018YFA0305800), the National Natural Science Foundation of China (Grant Nos. 51922011 and 61888102), Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDB30000000 and XDB28000000), and the Fundamental Research Funds for the Central Universities, China.
Corresponding Authors:  Yu-Yang Zhang, Shixuan Du     E-mail:;

Cite this article: 

Yuxiang Gao(高于翔), Xin Jin(金鑫), Yixuan Gao(高艺璇), Yu-Yang Zhang(张余洋), and Shixuan Du(杜世萱) Electronic structures of vacancies in Co3Sn2S2 2021 Chin. Phys. B 30 077102

[1] Liu D F, Liang A J, Liu E K, Xu Q N, Li Y W, Chen C, Pei D, Shi W J, Mo S K, Dudin P, Kim T, Cacho C, Li G, Sun Y, Yang L X, Liu Z K, Parkin S S P, Felser C and Chen Y L 2019 Science 365 1282
[2] Liu C, Shen J L, Gao J C, Yi C J, Liu D, Xie T, Yang L, Danilkin S, Deng G C, Wang W H, Li S L, Shi Y G, Weng H M, Liu E K and Luo H Q 2021 Sci. China-Phys. Mech. Astron. 64 217062
[3] Shvetsov O O, Esin V D, Barash Y S, Timonina A V, Kolesnikov N N and Deviatov E V 2020 Phys. Rev. B 101 035304
[4] Howard S, Jiao L, Wang Z Y, Vir P, Shekhar C, Felser C, Hughes T and Madhavan V 2019 arXiv:1910.11205
[5] Fujiwara K, Ikeda J, Shiogai J, Seki T, Takanashi K and Tsukazaki A 2019 Jpn. J. Appl. Phys. 58 050912
[6] Shi Q, Zhang X, Yang E, Yan J, Yu X Y, Sun C, Li S and Chen Z W 2018 Results Phys. 11 1004
[7] Mangelis P, Vaqueiro P, Jumas J C, da Silva I, Smith R I and Powell A V 2017 J. Solid State Chem. 251 204
[8] Lv B Q, Xu N, Weng H M, Ma J Z, Richard P, Huang X C, Zhao L X, Chen G F, Matt C E, Bisti F, Strocov V N, Mesot J, Fang Z, Dai X, Qian T, Shi M and Ding H 2015 Nat. Phys. 11 724
[9] Xu S Y, Belopolski I, Alidoust N, et al. 2015 Science 349 613
[10] Weng H M, Fang C, Fang Z, Bernevig B A and Dai X 2015 Phys. Rev. X 5 011029
[11] Vaqueiro P and Sobany G G 2009 Solid State Sci. 11 513
[12] Kassem M A, Tabata Y, Waki T and Nakamura H 2017 Phys. Rev. B 96 014429
[13] Yan W N, Zhang X, Shi Q, Yu X Y, Zhang Z Q, Wang Q, Li S and Lei H C 2018 Solid State Commun. 281 57
[14] Sugawara A, Akashi T, Kassem M, Tabata Y, Waki T and Nakamura H 2019 Phys. Rev. Mater. 3 104421
[15] Morali N, Batabyal R, Nag P K, Liu E K, Xu Q N, Sun Y, Yan B H, Felser C, Avraham N and Beidenkopf H 2019 Science 365 1286
[16] Xu Q N, Liu E K, Shi W J, Muechler L, Gayles J, Felser C and Sun Y 2018 Phys. Rev. B 97 235416
[17] Jiao L, Xu Q N, Cheon Y, Sun Y, Felser C, Liu E K and Wirth S 2019 Phys. Rev. B 99 245158
[18] Li G W, Xu Q N, Shi W J, Fu C G, Jiao L, Kamminga M E, Yu M Q, Tüysüz H, Kumar N, Süß V, Saha R, Srivastava A K, Wirth S, Auffermann G, Gooth J, Parkin S, Sun Y, Liu E K and Felser C 2019 Sci. Adv. 5 eaaw9867
[19] Yang R, Zhang T, Zhou L Q, Dai Y M, Liao Z Y, Weng H M and Qiu X G 2020 Phys. Rev. Lett. 124 077403
[20] Liu E K, Sun Y, Kumar N, et al. 2018 Nat. Phys. 14 1125
[21] Wang Q, Xu Y F, Lou R, Liu Z H, Li M, Huang Y B, Shen D W, Weng H M, Wang S C and Lei H C 2018 Nat. Commun. 9 3681
[22] Chen X L, Wang M Y, Gu C C, Wang S Y, Zhou Y H, An C, Zhou Y, Zhang B W, Chen C H, Yuan Y F, Qi M Y, Zhang L L, Zhou H D, Zhou J H, Yao Y G and Yang Z R 2019 Phys. Rev. B 100 165145
[23] Geishendorf K, Schlitz R, Vir P, Shekhar C, Felser C, Nielsch K, Goennenwein S T B and Thomas A 2019 Appl. Phys. Lett. 114 092403
[24] Guguchia Z, Verezhak J A T, Gawryluk D J, et al. 2020 Nat. Commun. 11 559
[25] Yang S Y, Noky J, Gayles J, Dejene F K, Sun Y, Dörr M, Skourski Y, Felser C, Ali M N, Liu E K and Parkin S S P 2020 Nano Lett. 20 7860
[26] Ding L C, Koo J, Xu L C, Li X K, Lu X F, Zhao L X, Wang Q, Yin Q W, Lei H C, Yan B H, Zhu Z W and Behnia K 2019 Phys. Rev. X 9 041061
[27] Geishendorf K, Vir P, Shekhar C, Felser C, Facio J I, van den Brink J, Nielsch K, Thomas A and Goennenwein S T B 2020 Nano Lett. 20 300
[28] Guin S N, Vir P, Zhang Y, Kumar N, Watzman S J, Fu C G, Liu E K, Manna K, Schnelle W, Gooth J, Shekhar C, Sun Y and Felser C 2019 Adv. Mater. 31 1806622
[29] Qiao Q, Zhang Y Y, Contreras-Guerrero R, Droopad R, Pantelides S T, Pennycook S J, Ogut S and Klie R F 2015 Appl. Phys. Lett. 107 201604
[30] Zhou W, Zhang Y Y, Chen J Y, Li D D, Zhou J D, Liu Z, Chisholm M F, Pantelides S T and Loh K P 2018 Sci. Adv. 4 eaap9096
[31] Xu H K and Ouyang G 2020 Chin. Phys. B 29 37302
[32] Reshchikov M A and Morkoc H 2005 J. Appl. Phys. 97 95
[33] Li L, Yang L A, Zhou X W, Zhang J C and Hao Y 2013 Chin. Phys. B 22 87104
[34] Zhao X X, Fu D Y, Ding Z J, Zhang Y Y, Wan D Y, Tan S J R, Chen Z X, Leng K, Dan J D, Fu W, Geng D C, Song P, Du Y H, Venkatesan T, Pantelides S T, Pennycook S J, Zhou W and Loh K P 2018 Nano Lett. 18 482
[35] Yang S Z, Gong Y J, Manchanda P, Zhang Y Y, Ye G L, Chen S M,Song L, Pantelides S T, Ajayan P M, Chisholm M F and Zhou W 2018 Adv. Mater. 30 180347
[36] Gao T, Kumar A, Shang Z, Duan X, Wang H, Wang S, Ji S, Yan D, Luo L, Liu W and Sun X 2019 Chin. Chem. Lett. 30 2274
[37] Hu K, Ming C, Liu Y, Zheng C, Zhang S, Wang D, Zhao W and Huang F 2020 Chin. Chem. Lett. 31 2809
[38] Yin J X, Shumiya N, Jiang Y X, et al. 2020 Nat. Commun. 11 4415
[39] Xing Y Q, Shen J L, Chen H, et al. 2020 Nat. Commun. 11 5613
[40] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[41] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[42] Blöchl P E 1994 Phys. Rev. B 50 17953
[43] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[44] Becke A D and Johnson E R 2006 J. Chem. Phys. 124 221101
[45] Tran F and Blaha P 2009 Phys. Rev. Lett. 102 226401
[46] Krukau A V, Vydrov O A, Izmaylov A F and Scuseria G E 2006 J. Chem. Phys. 125 224106
[47] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[48] Li Q, Rellán-Piñeiro M, Almora-Barrios N, Garcia-Ratés M, Remediakis I N and López N 2017 Nanoscale 9 13089
[49] Stekolnikov A A, Furthmuller J and Bechstedt F 2002 Phys. Rev. B 65 115318
[50] Wang W, Dai S Y, Li X D, Yang J R, Srolovitz D J and Zheng Q S 2015 Nat. Commun. 6 7853
[51] Miletto, Granozio F and di Uccio U S 1997 J. Cryst. Growth 174 409
[52] Yin J X, Zhang S S, Chang G Q, et al. 2019 Nat. Phys. 15 443
[53] Hong J H, Hu Z X, Probert M, Li K, Lv D H, Yang X N, Gu L, Mao N N, Feng Q L, Xie L M, Zhang J, Wu D Z, Zhang Z Y, Jin C H, Ji W, Zhang X X, Yuan J and Zhang Z 2015 Nat. Commun. 6 6293
[54] Li W F, Fang C M and van Huis M A 2016 Phys. Rev. B 94 195425
[1] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[2] Effect of structural vacancies on lattice vibration, mechanical, electronic, and thermodynamic properties of Cr5BSi3
Tian-Hui Dong(董天慧), Xu-Dong Zhang(张旭东), Lin-Mei Yang(杨林梅), and Feng Wang(王峰). Chin. Phys. B, 2022, 31(2): 026101.
[3] Accelerated oxygen evolution kinetics on Ir-doped SrTiO3 perovskite by NH3 plasma treatment
Li-Li Deng(邓丽丽), Xiao-Ping Ma(马晓萍), Man-Ting Lu(卢曼婷), Yi He(何弈), Rong-Lei Fan(范荣磊), and Yu Xin(辛煜). Chin. Phys. B, 2022, 31(11): 118201.
[4] Low temperature ferromagnetism in CaCu3Ti4O12
Song Yang(杨松), Xiao-Jing Luo(罗晓婧), Zhi-Ming Shen(申志明), Tian Gao(高湉), Yong-Sheng Liu(刘永生), and Shao-Long Tang(唐少龙). Chin. Phys. B, 2021, 30(9): 098103.
[5] Thermodynamic criterion for searching high mobility two-dimensional electron gas at KTaO3 interface
Wen-Xiao Shi(时文潇), Hui Zhang(张慧), Shao-Jin Qi(齐少锦), Jin-E Zhang(张金娥), Hai-Lin Huang(黄海林), Bao-Gen Shen(沈保根), Yuan-Sha Chen(陈沅沙), and Ji-Rong Sun(孙继荣). Chin. Phys. B, 2021, 30(7): 077302.
[6] Negative thermal expansion of Ca2RuO4 with oxygen vacancies
Sen Xu(徐森), Yangming Hu(胡杨明), Yuan Liang(梁源), Chenfei Shi(史晨飞), Yuling Su(苏玉玲), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军). Chin. Phys. B, 2020, 29(8): 086501.
[7] Extended damage range of (Al0.3Cr0.2Fe0.2Ni0.3)3O4 high entropy oxide films induced by surface irradiation
Jian-Cong Zhang(张健聪), Sen Sun(孙森), Zhao-Ming Yang(杨朝明), Nan Qiu(裘南), Yuan Wang(汪渊). Chin. Phys. B, 2020, 29(6): 066104.
[8] Defects and electrical properties in Al-implanted 4H-SiC after activation annealing
Yi-Dan Tang(汤益丹), Xin-Yu Liu(刘新宇), Zheng-Dong Zhou(周正东), Yun Bai(白云), Cheng-Zhan Li(李诚瞻). Chin. Phys. B, 2019, 28(10): 106101.
[9] Band engineering of double-wall Mo-based hybrid nanotubes
Lei Tao(陶蕾), Yu-Yang Zhang(张余洋), Jiatao Sun(孙家涛), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2018, 27(7): 076104.
[10] Bias polarity-dependent unipolar switching behavior in NiO/SrTiO3 stacked layer
Xian-Wen Sun(孙献文), Cai-Hong Jia(贾彩虹), Xian-Sheng Liu(刘献省), Guo-Qiang Li(李国强), Wei-Feng Zhang(张伟风). Chin. Phys. B, 2018, 27(4): 047304.
[11] Density functional theory analysis of electronic structure and optical properties of La-doped Cd2SnO4 transparent conducting oxide
Mei Tang(汤梅), Jia-Xiang Shang(尚家香), Yue Zhang(张跃). Chin. Phys. B, 2018, 27(1): 017101.
[12] Electrical analysis of inter-growth structured Bi4Ti3O12–Na0.5Bi4.5Ti4O15 ceramics
Xiangping Jiang(江向平), Yalin Jiang(江亚林), Xingan Jiang(江兴安), Chao Chen(陈超), Na Tu(涂娜), Yunjing Chen(陈云婧). Chin. Phys. B, 2017, 26(7): 077701.
[13] First-principles studies of electronic, optical, and mechanical properties of γ-Bi2Sn2O7
Chao-Hao Hu(胡朝浩), Xue-Hui Yin(殷学辉), Dian-Hui Wang(王殿辉), Yan Zhong(钟燕), Huai-Ying Zhou(周怀营), Guang-Hui Rao(饶光辉). Chin. Phys. B, 2016, 25(6): 067801.
[14] Identification of surface oxygen vacancy-related phonon-plasmon coupling in TiO2 single crystal
Jun-Hong Guo(郭俊宏), Ting-Hui Li(李廷会), Fang-Ren Hu(胡芳仁), Li-Zhe Liu(刘力哲). Chin. Phys. B, 2016, 25(12): 127103.
[15] Strain-induced magnetism in ReS2 monolayer with defects
Xiao-Ou Zhang(张小欧), Qing-Fang Li(李庆芳). Chin. Phys. B, 2016, 25(11): 117103.
No Suggested Reading articles found!