Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 077101    DOI: 10.1088/1674-1056/abfa08
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Non-Hermitian Kitaev chain with complex periodic and quasiperiodic potentials

Xiang-Ping Jiang(蒋相平)1,2, Yi Qiao(乔艺)1,†, and Junpeng Cao(曹俊鹏)1,2,3,4,‡
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Songshan Lake Materials Laboratory, Dongguan 523808, China;
4 Peng Huanwu Center for Fundamental Theory, Xian 710127, China
Abstract  We study the topological properties of the one-dimensional non-Hermitian Kitaev model with complex either periodic or quasiperiodic potentials. We obtain the energy spectrum and the phase diagrams of the system by using the transfer matrix method as well as the topological invariant. The phase transition points are given analytically. The Majorana zero modes in the topological nontrivial regimes are obtained. Focusing on the quasiperiodic potential, we obtain the phase transition from the topological superconducting phase to the Anderson localization, which is accompanied with the Anderson localization-delocalization transition in this non-Hermitian system. We also find that the topological regime can be reduced by increasing the non-Hermiticity.
Keywords:  non-Hermitian physics      Majorana zero modes      transfer matrix  
Received:  22 March 2021      Revised:  19 April 2021      Accepted manuscript online:  21 April 2021
PACS:  71.20.-b (Electron density of states and band structure of crystalline solids)  
  64.70.-p (Specific phase transitions)  
  78.67.Lt (Quantum wires)  
Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2016YFA0300600 and 2016YFA0302104), the National Natural Science Foundation of China (Grant Nos. 12074410, 12047502, 11934015, 11947301, and 11774397), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB33000000), and the fellowship of China Postdoctoral Science Foundation (Grant No. 2020M680724).
Corresponding Authors:  Yi Qiao, Junpeng Cao     E-mail:  joy@foxmail.com;junpengcao@iphy.ac.cn

Cite this article: 

Xiang-Ping Jiang(蒋相平), Yi Qiao(乔艺), and Junpeng Cao(曹俊鹏) Non-Hermitian Kitaev chain with complex periodic and quasiperiodic potentials 2021 Chin. Phys. B 30 077101

[1] Hasan M and Kane C 2010 Rev. Mod. Phys. 82 3045
[2] Ryu S, Schnyder A, Furusaki A and Ludwig A 2010 New J. Phys. 12 065010
[3] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[4] Lutchyn R M, Sau J D and Sarma S D 2010 Phys. Rev. Lett. 105 077001
[5] Oreg Y, Refael G and von Oppen F 2010 Phys. Rev. Lett. 105 177002
[6] Kitaev A 2001 Phys. Usp. 44 131
[7] Adagideli I, Wimmer M and Teker A 2014 Phys. Rev. B 89 144506
[8] Shivamoggi V, Refael G and Moore J E 2010 Phys. Rev. B 82 041405
[9] Sau J D and Sarma S D 2012 Nat. Commun. 3 964
[10] Akhmerov A R, Dahlhaus J P, Hassler F, Wimmer M and Beenakker C W J 2011 Phys. Rev. Lett. 106 057001
[11] Brouwer P W, Duckheim M, Romito A and von Oppen F 2011 Phys. Rev. Lett. 107 196804
[12] Brouwer P W, Duckheim M, Romito A and von Oppen F 2011 Phys. Rev. B 84 144526
[13] Harper P G 1955 Proc. Phys. Soc. London A 68 874
[14] Aubry S and André G 1980 Ann. Israel Phys. Soc. 3 133
[15] DeGottardi W, Sen D and Vishveshwara S 2013 Phys. Rev. Lett. 110 146404
[16] Cai X, Lang L J, Chen S and Wang Y 2013 Phys. Rev. Lett. 110 176403
[17] DeGottardi W, Thakurathi M, Vishveshwara S and Sen D 2013 Phys. Rev. B 88 165111
[18] Wang J, Liu X J, Xianlong G and Hu H 2016 Phys. Rev. B 93 104504
[19] Liu T, Cheng S, Guo H and Xianlong G 2021 Phys. Rev. B 103 104203
[20] Zeng Q B, Lv R and You L 2020 arXiv:2012.07547
[21] Gong Z, Ashida Y, Kawabata K, Takasan K, Higashikawa S and Ueda M 2018 Phys. Rev. X 8 031079
[22] Kawabata K, Shiozaki K, Ueda M and Sato M 2019 Phys. Rev. X 9 041015
[23] Zhou H and Lee J 2019 Phys. Rev. B 99 235112
[24] Longhi S 2019 Phys. Rev. Lett. 122 237601
[25] Bergholtz E J, Budich J C and Kunst F K 2021 Rev. Mod. Phys. 93 015005
[26] Kawabata K, Ashida Y, Katsura H and Ueda M 2018 Phys. Rev. B 98 085116
[27] Menke H and Hirschmann M 2017 Phys. Rev. B 95 174506
[28] Zeng Q B, Zhu B, Chen S, You L and Lv R 2016 Phys. Rev. A 94 022119
[29] Yuce C 2016 Phys. Rev. A 93 062130
[30] Li C, Zhang X Z, Zhang G and Song Z 2018 Phys. Rev. B 97 115436
[31] Kawabata K, Higashikawa S, Gong Z, Ashida Y and Ueda M 2019 Nat. Commun. 10 297
[32] DeGottardi W, Sen D and Vishveshwara S 2011 New J. Phys. 13 065028
[33] Liu Y, Zhou Q and Chen S 2020 arXiv:2009.07605
[34] Cai X 2021 Phys. Rev. B 103 014201
[35] Cai X 2021 arXiv:2103.04107
[36] Hegde S S and Vishveshwara S 2016 Phys. Rev. B 94 115166
[37] Zhang P and Nori F 2016 New J. Phys. 18 043033
[1] Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
You-Ming Liu(刘又铭), Yuan-Kun Shi(史源坤), Ban-Fei Wan(万宝飞), Dan Zhang(张丹), and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044203.
[2] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[3] Real non-Hermitian energy spectra without any symmetry
Boxue Zhang(张博学), Qingya Li(李青铔), Xiao Zhang(张笑), and Ching Hua Lee(李庆华). Chin. Phys. B, 2022, 31(7): 070308.
[4] Efficient and stable wireless power transfer based on the non-Hermitian physics
Chao Zeng(曾超), Zhiwei Guo(郭志伟), Kejia Zhu(祝可嘉), Caifu Fan(范才富), Guo Li(李果), Jun Jiang(江俊), Yunhui Li(李云辉), Haitao Jiang(江海涛), Yaping Yang(羊亚平), Yong Sun(孙勇), and Hong Chen(陈鸿). Chin. Phys. B, 2022, 31(1): 010307.
[5] Cross correlation mediated by distant Majorana zero modes with no overlap
Lupei Qin(秦陆培), Wei Feng(冯伟), and Xin-Qi Li(李新奇). Chin. Phys. B, 2022, 31(1): 017402.
[6] Two-body exceptional points in open dissipative systems
Peize Ding(丁霈泽) and Wei Yi(易为). Chin. Phys. B, 2022, 31(1): 010309.
[7] Topological properties of non-Hermitian Creutz ladders
Hui-Qiang Liang(梁辉强) and Linhu Li(李林虎). Chin. Phys. B, 2022, 31(1): 010310.
[8] Exact solutions of non-Hermitian chains with asymmetric long-range hopping under specific boundary conditions
Cui-Xian Guo(郭翠仙) and Shu Chen(陈澍). Chin. Phys. B, 2022, 31(1): 010313.
[9] Edge states enhanced by long-range hopping: An analytical study
Huiping Wang(王会平), Li Ren(任莉), Liguo Qin(秦立国), and Yueyin Qiu(邱岳寅). Chin. Phys. B, 2021, 30(10): 107301.
[10] Impact vibration properties of locally resonant fluid-conveying pipes
Bing Hu(胡兵), Fu-Lei Zhu(朱付磊), Dian-Long Yu(郁殿龙), Jiang-Wei Liu(刘江伟), Zhen-Fang Zhang(张振方), Jie Zhong(钟杰), and Ji-Hong Wen(温激鸿). Chin. Phys. B, 2020, 29(12): 124301.
[11] Explicit forms of zero modes in symmetric interacting Kitaev chain without and with dimerization
Yiming Wang(王一鸣), Zhidan Li(李志聃), Qiang Han(韩强). Chin. Phys. B, 2018, 27(6): 067101.
[12] Topological phase diagrams and Majorana zero modes of the Kitaev ladder and tube
Yiming Wang(王一鸣), Zhidan Li(李志聃), Qiang Han(韩强). Chin. Phys. B, 2018, 27(4): 047401.
[13] Topological phase boundary in a generalized Kitaev model
Da-Ping Liu(刘大平). Chin. Phys. B, 2016, 25(5): 057101.
[14] Two-color light-emitting diodes with polarization-sensitive high extraction efficiency based on graphene
H Sattarian, S Shojaei, E Darabi. Chin. Phys. B, 2016, 25(5): 058504.
[15] Topological phase transition in a ladder of the dimerized Kitaev superconductor chains
Bo-Zhen Zhou(周博臻), Bin Zhou(周斌). Chin. Phys. B, 2016, 25(10): 107401.
No Suggested Reading articles found!