Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(6): 066104    DOI: 10.1088/1674-1056/ab8374
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Extended damage range of (Al0.3Cr0.2Fe0.2Ni0.3)3O4 high entropy oxide films induced by surface irradiation

Jian-Cong Zhang(张健聪), Sen Sun(孙森), Zhao-Ming Yang(杨朝明), Nan Qiu(裘南), Yuan Wang(汪渊)
Key Laboratory of Radiation Physics and Technology, Ministry of Education, Institute of Nuclear Science and Technology, College of Physics, Sichuan University, Chengdu 610064, China
Abstract  Irradiation makes structural materials of nuclear reactors degraded and failed. However, the damage process of materials induced by irradiation is not fully elucidated, mostly because the charged particles only bombarded the surface of the materials (within a few microns). In this work, we investigated the effects of surface irradiation on the indirect irradiation region of the (Al0.3Cr0.2Fe0.2Ni0.3)3O4 high entropy oxide (HEO) films in detail by plasma surface interaction. The results show that the damage induced by surface irradiation significantly extends to the indirect irradiation region of HEO film where the helium bubbles, dislocations, phase transformation, and the nickel oxide segregation were observed.
Keywords:  high entropy oxide films      surface irradiation      radiation-induced segregation      vacancies      extended irradiation damage region  
Received:  31 January 2020      Revised:  09 March 2020      Accepted manuscript online: 
PACS:  61.72.jd (Vacancies)  
  68.35.Dv (Composition, segregation; defects and impurities)  
  68.37.-d (Microscopy of surfaces, interfaces, and thin films)  
  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFB0405702) and the National Natural Science Foundation of China (Grant No. 11775150).
Corresponding Authors:  Yuan Wang     E-mail:  wyuan@scu.edu.cn

Cite this article: 

Jian-Cong Zhang(张健聪), Sen Sun(孙森), Zhao-Ming Yang(杨朝明), Nan Qiu(裘南), Yuan Wang(汪渊) Extended damage range of (Al0.3Cr0.2Fe0.2Ni0.3)3O4 high entropy oxide films induced by surface irradiation 2020 Chin. Phys. B 29 066104

[1] Tripathi J K, Novakowski T J and Hassanein A 2016 Appl. Surf. Sci. 378 63
[2] Sun S, Qiu N, Zhang K, He P N, Ma Y J, Gou F J and Wang Y 2019 Scr. Mater. 161 40
[3] Xia S Q, Gao M C, Yang T F, Liaw P K and Zhang Y 2016 J. Nucl. Mater. 480 100
[4] Xiao X 2019 Metals 9 1132
[5] Bufford D C, Barr C M, Wang B M, Hattar K and Haque A 2019 JOM 71 3350
[6] Was G S 2015 Fundamentals of Radiation Materials Science, 2nd edn. (Ann Arbor, MI: Springer) pp. 167-199
[7] Kuang W, Hesterberg J and Was G S 2019 Corros. Sci. 161 108183
[8] Zinkle S J and Was G S 2013 Acta Mater. 61 735
[9] Lu C Y, Niu L L, Chen N J, Jin K, Yang T N, Xiu P Y, Zhang Y W, Gao F, Bei H B, Shi S, He M R, Robertson I M, Weber W J and Wang L M 2016 Nat. Commun. 7 13564
[10] Wei Y X, Shen Z Y, Zhang W P, Tang R, Long Y X, Chen C, Zhou X, Guo L P and Qiu S 2019 Nucl. Instrum. Methods Phys. Res. Sect. B 459 7
[11] Rost C M, Sachet E, Borman T, Moballegh A, Dickey E C, Hou D and Jones J L 2015 Nat. Commun. 6 8485
[12] Kumar N A P K, Li C, Leonard K J, Bei H and Zinkle S J 2016 Acta Mater. 113 230
[13] Bérardan D, Franger S, Dragoe D, Meena A K and Dragoe N 2016 Phys. Status Solidi-Rapid Res. Lett. 10 328
[14] Bérardan D, Franger S, Meena A K and Dragoe N 2016 J. Mater. Chem. A 4 9536
[15] Qiu N, Chen H, Yang Z M, Sun S, Wang Y and Cui Y H 2019 J. Alloys Compd. 777 767
[16] Braun J L, Rost C M, Lim M, Giri A, Olson D H, Kotsonis G N, Stan G, Brenner D W, Maria J P and Hopkins P E 2018 Adv. Mater. 30 1805004
[17] Yang Z M, Zhang K, Qiu N, Zhang H B, Wang Y and Chen J 2019 Chin. Phys. B 28 046201
[18] Gao M C, Yeh J W, Liaw P K and Zhang Y 2016 High-Entropy Alloys, Fundamentals and Applications (Switzerland: Springer International Publishing) pp. 62-64
[19] Tsai M and Yeh J W 2014 Mater. Res. Lett. 2 107
[20] Zheng G, Carpenter D, Dolan K and Hu L 2019 Nucl. Eng. 353 110232
[21] Lawrence J L 1977 Acta Cryst. A 33 343
[22] Lao Y X, Niu W X, Shi Y L, Du H, Zhang H B, Hu S L and Wang Y 2018 J. Alloys Compd. 739 401
[23] Garner F A and Toloczko M B 1997 J. Nucl. Mater. 251 252
[24] Egami T, Ojha M, Khorgolkhuuk O, Nicholson D M and Stocks G M 2015 JOM 67 2345
[25] Tsai K Y, Tsai M H and Yeh J W 2013 Acta Mater. 61 4887
[26] Nie C M, Wen S N, Li Z H, Xie S B and Wang H Q 2002 Acta Chim. Sin. 60 207
[1] Effect of structural vacancies on lattice vibration, mechanical, electronic, and thermodynamic properties of Cr5BSi3
Tian-Hui Dong(董天慧), Xu-Dong Zhang(张旭东), Lin-Mei Yang(杨林梅), and Feng Wang(王峰). Chin. Phys. B, 2022, 31(2): 026101.
[2] Accelerated oxygen evolution kinetics on Ir-doped SrTiO3 perovskite by NH3 plasma treatment
Li-Li Deng(邓丽丽), Xiao-Ping Ma(马晓萍), Man-Ting Lu(卢曼婷), Yi He(何弈), Rong-Lei Fan(范荣磊), and Yu Xin(辛煜). Chin. Phys. B, 2022, 31(11): 118201.
[3] Low temperature ferromagnetism in CaCu3Ti4O12
Song Yang(杨松), Xiao-Jing Luo(罗晓婧), Zhi-Ming Shen(申志明), Tian Gao(高湉), Yong-Sheng Liu(刘永生), and Shao-Long Tang(唐少龙). Chin. Phys. B, 2021, 30(9): 098103.
[4] Electronic structures of vacancies in Co3Sn2S2
Yuxiang Gao(高于翔), Xin Jin(金鑫), Yixuan Gao(高艺璇), Yu-Yang Zhang(张余洋), and Shixuan Du(杜世萱). Chin. Phys. B, 2021, 30(7): 077102.
[5] Thermodynamic criterion for searching high mobility two-dimensional electron gas at KTaO3 interface
Wen-Xiao Shi(时文潇), Hui Zhang(张慧), Shao-Jin Qi(齐少锦), Jin-E Zhang(张金娥), Hai-Lin Huang(黄海林), Bao-Gen Shen(沈保根), Yuan-Sha Chen(陈沅沙), and Ji-Rong Sun(孙继荣). Chin. Phys. B, 2021, 30(7): 077302.
[6] Negative thermal expansion of Ca2RuO4 with oxygen vacancies
Sen Xu(徐森), Yangming Hu(胡杨明), Yuan Liang(梁源), Chenfei Shi(史晨飞), Yuling Su(苏玉玲), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军). Chin. Phys. B, 2020, 29(8): 086501.
[7] Defects and electrical properties in Al-implanted 4H-SiC after activation annealing
Yi-Dan Tang(汤益丹), Xin-Yu Liu(刘新宇), Zheng-Dong Zhou(周正东), Yun Bai(白云), Cheng-Zhan Li(李诚瞻). Chin. Phys. B, 2019, 28(10): 106101.
[8] Bias polarity-dependent unipolar switching behavior in NiO/SrTiO3 stacked layer
Xian-Wen Sun(孙献文), Cai-Hong Jia(贾彩虹), Xian-Sheng Liu(刘献省), Guo-Qiang Li(李国强), Wei-Feng Zhang(张伟风). Chin. Phys. B, 2018, 27(4): 047304.
[9] Electrical analysis of inter-growth structured Bi4Ti3O12–Na0.5Bi4.5Ti4O15 ceramics
Xiangping Jiang(江向平), Yalin Jiang(江亚林), Xingan Jiang(江兴安), Chao Chen(陈超), Na Tu(涂娜), Yunjing Chen(陈云婧). Chin. Phys. B, 2017, 26(7): 077701.
[10] Identification of surface oxygen vacancy-related phonon-plasmon coupling in TiO2 single crystal
Jun-Hong Guo(郭俊宏), Ting-Hui Li(李廷会), Fang-Ren Hu(胡芳仁), Li-Zhe Liu(刘力哲). Chin. Phys. B, 2016, 25(12): 127103.
[11] Structures and electrical properties of pure and vacancy-included ZnO NWs of different sizes
Yu Xiao-Xia (于晓霞), Zhou Yan (周彦), Liu Jia (刘甲), Jin Hai-Bo (金海波), Fang Xiao-Yong (房晓勇), Cao Mao-Sheng (曹茂盛). Chin. Phys. B, 2015, 24(12): 127307.
[12] Transient competition between photocatalysis and carrier recombination in TiO2 nanotube film loaded with Au nanoparticles
Shao Zhu-Feng (邵珠峰), Yang Yan-Qiang (杨延强), Liu Shu-Tian (刘树田), Wang Qiang (王强). Chin. Phys. B, 2014, 23(9): 096102.
[13] Electronic and magnetic properties of BiFeO3 with intrinsic defects:First-principles prediction
Yang Rui-Peng (杨瑞鹏), Lin Si-Xian (林思贤), Fang Xiao-Gong (方潇功), Qin Ming-Hui (秦明辉), Gao Xing-Sen (高兴森), Zeng Min (曾敏), Liu Jun-Ming (刘俊明). Chin. Phys. B, 2014, 23(6): 067102.
[14] Defect types and room temperature ferromagnetism in N-doped rutile TiO2 single crystals
Qin Xiu-Bo (秦秀波), Li Dong-Xiang (李东翔), Li Rui-Qin (李瑞琴), Zhang Peng (张鹏), Li Yu-Xiao (李玉晓), Wang Bao-Yi (王宝义). Chin. Phys. B, 2014, 23(6): 067502.
[15] One-dimensional diffusion of vacancies on Sr/Si(100)-c(2×4) surface
Yang Jing-Jing (杨景景), Du Wen-Han (杜文汉). Chin. Phys. B, 2013, 22(6): 066801.
No Suggested Reading articles found!