Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(4): 045202    DOI: 10.1088/1674-1056/abd16b
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Spatio-temporal measurements of overshoot phenomenon in pulsed inductively coupled discharge

Xiang-Yun Lv(吕翔云), Fei Gao(高飞), Quan-Zhi Zhang(张权治), and You-Nian Wang(王友年)
1 Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, China
Abstract  Pulse inductively coupled plasma has been widely used in the microelectronics industry, but the existence of overshoot phenomenon may affect the uniformity of plasma and generate high-energy ions, which could damage the chip. The overshoot phenomenon at various spatial locations in pulsed inductively coupled Ar and Ar/CF4 discharges is studied in this work. The electron density, effective electron temperature, relative light intensity, and electron energy probability function (EEPF) are measured by using a time-resolved Langmuir probe and an optical probe, as a function of axial and radial locations. At the initial stage of pulse, both electron density and relative light intensity exhibit overshoot phenomenon, i.e., they first increase to a peak value and then decrease to a convergent value. The overshoot phenomenon gradually decays, when the probe moves away from the coils. Meanwhile, a delay appears in the variation of the electron densities, and the effective electron temperature decreases, which may be related to the reduced strength of electric field at a distance, and the consequent fewer high-energy electrons, inducing limited ionization and excitation rate. The overshoot phenomenon gradually disappears and the electron density decreases, when the probe moves away from reactor centre. In Ar/CF4 discharge, the overshoot phenomenon of electron density is weaker than that in the Ar discharge, and the plasma reaches a steady density within a much shorter time, which is probably due to the more ionization channels and lower ionization thresholds in the Ar/CF4 plasma.
Keywords:  pulse inductively coupled plasma      overshoot      spatial distribution  
Received:  16 November 2020      Revised:  02 December 2020      Accepted manuscript online:  08 December 2020
PACS:  52.70.-m (Plasma diagnostic techniques and instrumentation)  
  52.70.Kz (Optical (ultraviolet, visible, infrared) measurements)  
  52.80.Yr (Discharges for spectral sources)  
  52.80.Vp (Discharge in vacuum)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11675039, 11875101, 11935005, and 12075049) and the Fundamental Research Funds for the Central Universities of China (Grant Nos. DUT18TD06 and DUT20LAB201).
Corresponding Authors:  Corresponding author. E-mail: fgao@dlut.edu.cn   

Cite this article: 

Xiang-Yun Lv(吕翔云), Fei Gao(高飞), Quan-Zhi Zhang(张权治), and You-Nian Wang(王友年) Spatio-temporal measurements of overshoot phenomenon in pulsed inductively coupled discharge 2021 Chin. Phys. B 30 045202

1 Lee H C 2018 Appl. Phys. Rev. 5 011108
2 Zaka-ul-lslam M 2016 AIP Conf. Proc. 1742 030012
3 Liu L, Sridhar S, Donnelly V M and Economou D J 2015 J. Phys. D: Appl. Phys. 48 485201
4 Bogdanov E A, Dejoseph C A, Demidov V I, Kudryavtsev A A and Serditov K Yu 2007 Plasma Sources Sci. Technol. 16 697
5 Subramonium P and Kushner M J 2004 Appl. Phys. Lett. 85 721
6 Midha V and Economou D J 2000 Plasma Sources Sci. Technol. 9 256
7 Ramamurthi B and Economou D J 2002 Plasma Sources Sci. Technol. 11 324
8 Qu C, Lanham S J, Shannon S C, Nam S K and Kushner M J 2020 J. Appl. Phys. 127 133302
9 Qu C, Nam S K and Kushner M J 2020 Plasma Sources Sci. Technol. 29 085006
10 Han J, Pribyl P, Gekelman W and Paterson A 2020 Phys. Plasmas 27 063509
11 Fischetti M and Laux S 1988 Phys. Rev. B 38 9721
12 Darnon M, Cunge G and Braithwaite N S J 2014 Plasma Sources Sci. Technol. 23 025002
13 Mishra A, Seo J S and Kim K N 2013 J. Phys. D: Appl. Phys. 46 235203
14 Mishra A and YeomG Y 2016 AIP Adv. 6 095101
15 Wang J J, Zhang J, Fu P, Huang Y Y, Guan R, Guo F, Sun H Z and Zhou Y 2019 IEEE Trans. Plasma Sci. 47 1793
16 Sirse N, Karkari S K and Turner M M 2015 Plasma Sources Sci. Technol. 24 022001
17 Ye R, Ishigaki T and Sakuta T 2005 Plasma Sources Sci. Technol. 14 387
18 Subramonium P and Kushner M J 2002 Vac. Sci. Technol. A 20 325
19 Kwon D C, Yu D H, Kwon H C, Im Y H and Lee H C 2020 Phys. Plasmas 27 073507
20 Gao F, Lv X Y, Zhang Y R and Wang Y N 2019 J. Appl. Phys. 126 093302
21 Gao F, Zhao S X, Li X S and Wang Y N 2010 Phys. Plasmas 17 103507
22 Liu W, Gao F, Zhao S X, Li X C and Wang Y N 2013 Phys. Plasmas 20 123513
23 Xue C, Gao F, Liu Y X, Liu J and Wang Y N 2018 Chin. Phys. B 27 045202
24 Petrovic Z L, Bzenic S, Jovanovic J and Djurovic S 1995 J. Phys. D: Appl. Phys. 28 2287
25 Morishita S, Hayashi Y and Makabe T 2010 Plasma Sources Sci. Technol. 19 055007
26 Gao F, Zhao S X, Li X S and Wang Y N 2009 Phys. Plasmas 16 113502
27 Ho P, Johannes J E and Buss J 2001 J. Vac. Sci. Technol. A 19 2344
28 Zhao S X, Gao F, Wang Y N and Bogaerts A 2012 Plasma Sources Sci. Technol. 21 025008
[1] Spectral redshift of high-order harmonics by adding a weak pulse in the falling part of the trapezoidal laser pulse
Xue-Fei Pan(潘雪飞), Jun Zhang(张军), Shuai Ben(贲帅), Tong-Tong Xu(徐彤彤), Xue-Shen Liu(刘学深). Chin. Phys. B, 2018, 27(2): 024206.
[2] Restraint of spatial distribution in high-order harmonic generation from a model of hydrogen molecular ion
Chang-Long Xia(夏昌龙), Jun Zhang(张军), Xiang-Yang Miao(苗向阳), Xue-Shen Liu(刘学深). Chin. Phys. B, 2017, 26(7): 073201.
[3] Laser phase effect on asymmetric harmonic distribution in H2+
Li-Qiang Feng(冯立强), Wen-Liang Li(李文亮), Hui Liu(刘辉). Chin. Phys. B, 2017, 26(4): 044206.
[4] Carrier envelope phase effect on the spatial distribution of high-order harmonic generation in asymmetric molecule
Jun Zhang(张军), Hai-Feng Liu(刘海凤), Xue-Fei Pan(潘雪飞), Hui Du(杜慧), Jing Guo(郭静), Xue-Shen Liu(刘学深). Chin. Phys. B, 2016, 25(5): 053202.
[5] Distribution of electron traps in SiO2/HfO2 nMOSFET
Xiao-Hui Hou(侯晓慧), Xue-Feng Zheng(郑雪峰), Ao-Chen Wang(王奥琛), Ying-Zhe Wang(王颖哲), Hao-Yu Wen(文浩宇), Zhi-Jing Liu(刘志镜), Xiao-Wei Li(李小炜), Yin-He Wu(吴银河). Chin. Phys. B, 2016, 25(5): 057702.
[6] Phase equilibrium of Cd1-xZnxS alloys studied by first-principles calculations and Monte Carlo simulations
Fu-Zhen Zhang(张付珍), Hong-Tao Xue(薛红涛), Fu-Ling Tang(汤富领), Xiao-Kang Li(李小康), Wen-Jiang Lu(路文江), Yu-Dong Feng(冯煜东). Chin. Phys. B, 2016, 25(1): 013103.
[7] Path integral Monte Carlo study of (H2)n@C70 (n=1,2,3)
Hao Yan (郝妍), Zhang Hong (张红), Cheng Xin-Lu (程新路). Chin. Phys. B, 2015, 24(8): 088103.
[8] Experimental study on imploding characteristics of wire-array Z pinches on Qiangguang-1 facility
Wang Zhen(王真), Xu Rong-Kun(徐荣昆), Yang Jian-Lun(杨建伦), Hua Xin-Sheng(华欣生), Li Lin-Bo(李林波), Xu Ze-Ping(许泽平), Ning Jia-Min(宁家敏), and Song Feng-Jun(宋凤军). Chin. Phys. B, 2007, 16(3): 772-777.
[9] Spatial distribution of electron characteristic in argon rf glow discharges
Zhu Zu-Song (祝祖送), Lin Kui-Xun (林揆训), Lin Xuan-Ying (林璇英), Qiu Gui-Ming (邱桂明), Yu Yun-Peng (余云鹏), Luo Yi-Lin (罗以琳). Chin. Phys. B, 2006, 15(5): 969-974.
[10] Velocity overshoot of start-up flow for a Maxwellfluid in a porous half-space
Tan Wen-Chang(谭文长). Chin. Phys. B, 2006, 15(11): 2644-2650.
[11] Spatial distribution of SiCln (n=0--2) in SiCl4 plasma measured by mass spectroscopy
Wang Zhao-Kui(王照奎), Lin Kui-Xun(林揆训), Lou Yan-Hui(娄艳辉), Lin Xuan-Ying(林璇英), and Zhu Zu-Song(祝祖送). Chin. Phys. B, 2006, 15(10): 2374-2377.
[12] A new method of measuring the spatial distribution of depletion fraction of silane plasma by mass spectrometer
Wang Zhao-Kui (王照奎), Lin Kui-Xun (林揆训), Lin Xuan-Ying (林璇英), Qiu Gui-Ming (邱桂明), Zhu Zu-Song (祝祖送). Chin. Phys. B, 2005, 14(7): 1413-1417.
No Suggested Reading articles found!