Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 065202    DOI: 10.1088/1674-1056/abe3f5

Time-resolved radial uniformity of pulse-modulated inductively coupled O2/Ar plasmas

Wei Liu(刘巍)1,2,†, Chan Xue(薛婵)3, Fei Gao(高飞)4, Yong-Xin Liu(刘永新)4, You-Nian Wang(王友年)4, and Yong-Tao Zhao(赵永涛)2,‡
1 School of Optoelectronic Engineering, Xi'an Technological University, Xi'an 710021, China;
2 School of Science, Xi'an Jiaotong University, Xi'an 710049, China;
3 School of Aerospace Science and Technology, Xidian University, Xi'an 710126, China;
4 School of Physics, Dalian University of Technology, Dalian 116024, China
Abstract  Time-resolved radial uniformity of pulse-modulated inductively coupled O2/Ar plasma has been investigated by means of a Langmuir probe as well as an optical probe in this paper. The radial uniformity of plasma has been discussed through analyzing the nonuniformity factor β (calculated by the measured ne, lower β means higher plasma radial uniformity). The results show that during the active-glow period, the radial distribution of ne exhibits an almost flat profile at the beginning phase, but it converts into a parabola-like profile during the steady state. The consequent evolution for β is that when the power is turned on, it declines to a minimum at first, and then it increases to a maximum, after that, it decays until it keeps constant. This phenomenon can be explained by the fact that the ionization gradually becomes stronger at the plasma center and meanwhile the rebuilt electric field (plasma potential and ambipolar potential) will confine the electrons at the plasma center as well. Besides, the mean electron energy (<ε>on) at the pulse beginning decreases with the increasing duty cycle. This will postpone the plasma ignition after the power is turned on. This phenomenon has been verified by the emission intensity of Ar (λ=750.4 nm). During the after-glow period, it is interesting to find that the electrons have a large depletion rate at the plasma center. Consequently, ne forms a hollow distribution in the radial direction at the late stage of after-glow. Therefore, β exhibits a maximum at the same time. This can be attributed to the formation of negative oxygen ion (O-) at the plasma center when the power has been turned off.
Keywords:  plasma radial uniformity      pulse-modulated discharge      inductively coupled plasma      Langmuir probe  
Received:  27 November 2020      Revised:  06 February 2021      Accepted manuscript online:  08 February 2021
PACS:  52.50.Dg (Plasma sources)  
  52.25.-b (Plasma properties)  
  52.70.-m (Plasma diagnostic techniques and instrumentation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11805150, 11875100, 11705141, and 11775282), the Dean Fund of the School of Optoelectronic Engineering (Grant No. 2019GDYT04), the Fund from the Xi'an Key Laboratory of Intelligent Detection and Perception (Grant No. 201805061ZD12CG45), and the Key Industry Innovation Chain Project of Shaanxi Provincial Science and the Technology Department, China (Grant No. 2018ZDCXL-GY-08-02-01).
Corresponding Authors:  Wei Liu, Yong-Tao Zhao     E-mail:;

Cite this article: 

Wei Liu(刘巍), Chan Xue(薛婵), Fei Gao(高飞), Yong-Xin Liu(刘永新), You-Nian Wang(王友年), and Yong-Tao Zhao(赵永涛) Time-resolved radial uniformity of pulse-modulated inductively coupled O2/Ar plasmas 2021 Chin. Phys. B 30 065202

[1] Banna S, Agarwal A, Cunge G, Darnon M, Pargon E and Joubert O 2012 J. Vac. Sci. Technol. A 30 040801
[2] Economou D J 2014 J. Phys. D: Appl. Phys. 47 303001
[3] Banna S, Agarwal A, Tokashiki K, Hong C, Rauf S, Todorow V, Ramaswamy K, Collins K, Stout P, Jeong-Yun L, Junho Y, Kyoungsub S, Sang-Jun C, Han-Soo C, Hyun-Joong K, Changhun L and Lymberopoulos D 2009 IEEE Trans. Plasma Sci. 37 1730
[4] Tokashiki K, Cho H, Banna S, Lee J Y, Shin K, Todorow V, Kim W S, Bai K, Joo S, Choe J D, Ramaswamy K, Agarwal A, Rauf S, Collins K, Choi S, Cho H, Kim H J, Lee C, Lymberopoulos D, Yoon J, Han W and Moon J T 2009 Jpn. J. Appl. Phys. 48 08HD01
[5] Khater M H, Overzet L J and Cherrington B E 1998 J.Vac. Sci. Technol. B 16 490
[6] Legradic B, Howling A A and Hollenstein C 2010 Phys. Plasmas 17 102111
[7] Subramonium P and Kushner M J 2004 J. Appl. Phys. 96 82
[8] Sharma S, Gahan D, Kechkar S, Daniels S and Hopkins M B 2014 Rev. Sci. Ins. 85 043509
[9] Zhao S X, Gao F, Wang Y N and Bogaerts A 2013 Plasma Sources Sci. Technol. 22 015017
[10] Sun X Y, Zhang Y R, Li X C and Wang Y N 2015 Phys. Plasmas 22 053508
[11] Khater M H and Overzet L J 2001 J. Vac. Sci. Technol. A 19 785
[12] Brcka J 2016 Jpn. J. Appl. Phys. 55 07LD08
[13] Kim K N, Lim J H, Yeom G Y, Lee S H and Lee J K 2006 Appl. Phys. Lett. 89 251501
[14] Subramonium P and Kushner M J 2004 Appl. Phys. Lett. 85 721
[15] Cunge G, Vempaire D and Sadeghi N 2010 Appl. Phys. Lett. 96 131501
[16] Collart E J H, Baggerman J A G and Visser R J 1995 J. Appl. Phys. 75 47
[17] Korzec D, Schott M and Engemann J 1995 J. Vac. Sci. Technol. A 13 843
[18] Mitschker F, Dietrich J, Ozkaya B, de los Arcos T, Giner I, Awakowicz P and Grundmeier G 2015 Plasma Processes Polym. 12 1002
[19] Fiebrandt M, Bibinov N and Awakowicz P 2020 Plasma Sources Sci. Technol. 29 045018
[20] Agarwal A, Rauf S and Collins K 2012 J. Appl. Phys. 112 0333303
[21] Marinov D, Otell Z E, Bowden M D and Braithwaite N S J 2015 Plasma Sources Sci. Technol. 24 065008
[22] Wagner J A and Katsch H M 2006 Plasma Sources Sci. Technol. 15 156
[23] Godyak V A and Demidov V I 2011 J. Phys. D: Appl. Phys. 44 269501
[24] Liu J, Wen D Q, Liu Y X, Gao F, Lu W Q and Wang Y N 2013 J. Vac. Sci. Technol. A 31 061308
[25] Gudmundsson J T and Thorsteinsson E G 2007 Plasma Sources Sci. Technol. 16 399
[26] Agarwal A, Stout P J, Banna S, Rauf S, Tokashiki K, Lee J Y and Collins K 2009 J. Appl. Phys. 106 103305
[27] Lieberman M A and Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing, 2nd edn. (New York: Wiley-Interscience) pp. 711-719
[28] Lee H C and Chung C W 2012 Phys. Plasmas 19 033514
[29] Lee H C and Chung C W 2014 Plasma Sources Sci. Technol. 23 062002
[30] Logue M D and Kushner M J 2015 J. Appl. Phys. 117 043301
[31] Ji-Hwan P, Dong-Hwan K, Yu-Sin K and Chin-Wook C 2017 Plasma Sources Sci. Technol. 26 055016
[32] Lei L, Shyam S, Vincent M D and Demetre J E 2015 J. Phys. D: Appl. Phys. 48 485201
[33] Boswell R W and Vender D 1995 Plasma Sources Sci. Technol. 4 534
[34] Liu W, Gao F, Zhao S X, Li X C and Wang Y N 2013 Phys. Plasmas 20 123513
[35] Lee C and Lieberman M A 1995 J. Vac. Sci. Technol. A 13 368
[36] Thorsteinsson E G and Gudmundsson J T 2010 J. Phys. D: Appl. Phys. 43 115201
[37] Gudmundsson J T, Kouznetsov I G, Patel K K and Lieberman M A 2001 J. Phys. D: Appl. Phys. 34 1100
[38] Katsch H M, Manthey C and Dobele H F 2003 Plasma Sources. Sci. Technol. 12 475
[1] Numerical investigation of radio-frequency negative hydrogen ion sources by a three-dimensional fluid model
Ying-Jie Wang(王英杰), Jia-Wei Huang(黄佳伟), Quan-Zhi Zhang(张权治), Yu-Ru Zhang(张钰如), Fei Gao(高飞), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(9): 095205.
[2] Numerical simulation and experimental validation of multiphysics field coupling mechanisms for a high power ICP wind tunnel
Ming-Hao Yu(喻明浩), Zhe Wang(王哲), Ze-Yang Qiu(邱泽洋), Bo Lv(吕博), and Bo-Rui Zheng(郑博睿). Chin. Phys. B, 2021, 30(6): 065201.
[3] Quasi-delta negative ions density of Ar/O2 inductively coupled plasma at very low electronegativity
Shu-Xia Zhao(赵书霞). Chin. Phys. B, 2021, 30(5): 055201.
[4] Effect of hydrogen content on dielectric strength of the silicon nitride film deposited by ICP-CVD
Yudong Zhang(张玉栋), Jiale Tang(唐家乐), Yongjie Hu(胡永杰), Jie Yuan(袁杰), Lulu Guan(管路路), Xingyu Li(李星雨), Hushan Cui(崔虎山), Guanghui Ding(丁光辉), Xinying Shi(石新颖), Kaidong Xu(许开东), and Shiwei Zhuang(庄仕伟). Chin. Phys. B, 2021, 30(4): 048103.
[5] Spatio-temporal measurements of overshoot phenomenon in pulsed inductively coupled discharge
Xiang-Yun Lv(吕翔云), Fei Gao(高飞), Quan-Zhi Zhang(张权治), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(4): 045202.
[6] Measurement of electronegativity during the E to H mode transition in a radio frequency inductively coupled Ar/O2 plasma
Peng-Cheng Du(杜鹏程), Fei Gao(高飞, Xiao-Kun Wang(王晓坤), Yong-Xin Liu(刘永新), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(3): 035202.
[7] Phase shift effects of radio-frequency bias on ion energy distribution in continuous wave and pulse modulated inductively coupled plasmas
Chan Xue(薛婵), Fei Gao(高飞), Yong-Xin Liu(刘永新), Jia Liu(刘佳), You-Nian Wang(王友年). Chin. Phys. B, 2018, 27(4): 045202.
[8] Gas flow characteristics of argon inductively coupled plasma and advections of plasma species under incompressible and compressible flows
Shu-Xia Zhao(赵书霞), Zhao Feng(丰曌). Chin. Phys. B, 2018, 27(12): 124701.
[9] Influence of a centered dielectric tube on inductively coupled plasma source: Chamber structures and plasma characteristics
Zhen-Hua Bi(毕振华), Yi Hong(洪义), Guang-Jiu Lei(雷光玖), Shuai Wang(王帅), You-Nian Wang(王友年), Dong-Ping Liu(刘东平). Chin. Phys. B, 2017, 26(7): 075203.
[10] Plasma-assisted surface treatment for low-temperature annealed ohmic contact on AlGaN/GaN heterostructure field-effect transistors
Lei Wang(王磊), Jiaqi Zhang(张家琦), Liuan Li(李柳暗), Yutaro Maeda(前田裕太郎), Jin-Ping Ao(敖金平). Chin. Phys. B, 2017, 26(3): 037201.
[11] Evaluation of a gate-first process for AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors with low ohmic annealing temperature
Liuan Li(李柳暗), Jiaqi Zhang(张家琦), Yang Liu(刘扬), Jin-Ping Ao(敖金平). Chin. Phys. B, 2016, 25(3): 038503.
[12] Influence of dielectric materials on uniformity of large-area capacitively coupled plasmas for N2/Ar discharges
Ying-Shuang Liang(梁英爽), Yu-Ru Zhang(张钰如), You-Nian Wang(王友年). Chin. Phys. B, 2016, 25(10): 105206.
[13] Discontinuity of mode transition and hysteresis in hydrogen inductively coupled plasma via a fluid model
Xu Hui-Jing (徐会静), Zhao Shu-Xia (赵书霞), Gao Fei (高飞), Zhang Yu-Ru (张钰如), Li Xue-Chun (李雪春), Wang You-Nian (王友年). Chin. Phys. B, 2015, 24(11): 115201.
[14] Electronic dynamic behavior in inductively coupled plasmas with radio-frequency bias
Gao Fei (高飞), Zhang Yu-Ru (张钰如), Zhao Shu-Xia (赵书霞), Li Xue-Chun (李雪春), Wang You-Nian (王友年). Chin. Phys. B, 2014, 23(11): 115202.
[15] Changes of the electron dynamics in hydrogen inductively coupled plasma
Gao Fei (高飞), Liu Wei (刘巍), Zhao Shu-Xia (赵书霞), Zhang Yu-Ru (张钰如), Sun Chang-Sen (孙长森), Wang You-Nian (王友年). Chin. Phys. B, 2013, 22(11): 115205.
No Suggested Reading articles found!