Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 068501    DOI: 10.1088/1674-1056/abd752
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Effect of electrical contact on performance of WSe2 field effect transistors

Yi-Di Pang(庞奕荻), En-Xiu Wu(武恩秀), Zhi-Hao Xu(徐志昊), Xiao-Dong Hu(胡晓东), Sen Wu(吴森), Lin-Yan Xu(徐临燕), and Jing Liu(刘晶)
State Key Laboratory of Precision Measurement Technology and Instruments, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
Abstract  Two-dimensional (2D) transition metal dichalcogenides (TMDCs) such as tungsten diselenide (WSe2) have spead many interesting physical properties, which may become ideal candidates to develop new generation electronic and optoelectronic devices. In order to reveal essential features of 2D TMDCs, it is necessary to fabricate high-quality devices with reliable electrical contact. We systematically analyze the effect of graphene and metal contacts on performance of multi-layered WSe2 field effect transistors (FETs). The temperature-dependent transport characteristics of both devices are tested. Only graphene-contacted WSe2 FETs are observed with the metal-insulator transition phenomenon which mainly attributes to the ultra-clean contact interface and lowered contact barrier. Further characterization on contact barrier demonstrates that graphene contact enables lower contact barrier with WSe2 than metal contact, since the Fermi level of graphene can be modulated by the gate bias to match the Fermi level of the channel material. We also analyze the carrier mobility of both devices under different temperatures, revealing that graphene contact can reduce the charge scattering of the device caused by ionized impurities and phonon vibrations in low and room temperature regions, respectively. This work is expected to provide reference for fabricating 2D material devices with decent performances.
Keywords:  two-dimensional materials      tungsten diselenide      metal-insulator transition      Schottky barrier      contact  
Received:  17 October 2020      Revised:  26 November 2020      Accepted manuscript online:  30 December 2020
PACS:  85.35.-p (Nanoelectronic devices)  
  85.30.Tv (Field effect devices)  
  81.16.-c (Methods of micro- and nanofabrication and processing)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 52075385), the National Key R&D Program of China (2018YFA0307200), and the 111 Project (Grant No. B07014).
Corresponding Authors:  Jing Liu     E-mail:  jingliu_1112@tju.edu.cn

Cite this article: 

Yi-Di Pang(庞奕荻), En-Xiu Wu(武恩秀), Zhi-Hao Xu(徐志昊), Xiao-Dong Hu(胡晓东), Sen Wu(吴森), Lin-Yan Xu(徐临燕), and Jing Liu(刘晶) Effect of electrical contact on performance of WSe2 field effect transistors 2021 Chin. Phys. B 30 068501

[1] Schwierz F 2010 Nat. Nanotechnol. 5 487
[2] Jariwala D, Sangwan V K, Lauhon L J, Marks T J and Hersam M C 2014 ACS Nano 8 1102
[3] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
[4] Liu Y, Weiss N O, Duan X, Cheng H C, Huang Y and Duan X 2016 Nat. Rev. Mater. 1 16042
[5] Liu B, Chen L, Liu G, Abbas A N, Fathi M and Zhou C 2014 ACS Nano 8 5304
[6] Das S, Chen H Y, Penumatcha A V and Appenzeller J 2013 Nano Lett. 13 100
[7] Liu Y, Wu H, Cheng H C, Yang S, Zhu E, He Q, Ding M, Li D, Guo J, Weiss N O, Huang Y and Duan X 2015 Nano Lett. 15 3030
[8] Radisavljevic B and Kis A 2013 Nat. Mater. 12 815
[9] Kaushik N, Nipane A, Basheer F, Dubey S, Grover S, Deshmukh M M and Lodha S 2014 Appl. Phys. Lett. 105 113505
[10] Kappera R, Voiry D, Yalcin S E, Branch B, Gupta G, Mohite A D and Chhowalla M 2014 Nat. Mater. 13 1128
[11] Wang J, Yao Q, Huang C W, Zou X, Liao L, Chen S, Fan Z, Zhang K, Wu W, Xiao X, Jiang C and Wu W W 2016 Adv. Mater. 28 8302
[12] Lee S, Tang A, Aloni S and Philip Wong H S 2016 Nano Lett. 16 276
[13] Chen J, Feng Z, Fan S, Shi S, Yue Y, Shen W, Xie Y, Wu E, Sun C, Liu J, Zhang H, Pang W, Sun D, Feng W, Feng Y, Wu S and Zhang D 2017 ACS Appl. Mater. Interfaces 9 30107
[14] Roy T, Tosun M, Kang J S, Sachid A B, Desai S B, Hettick M, Hu C C and Javey A 2014 ACS Nano 8 6259
[15] Cheng Q, Pang J, Sun D, Wang J, Zhang S, Liu F, Chen Y, Yang R, Liang N, Lu X, Ji Y, Wang J, Zhang C, Sang Y, Liu H and Zhou W 2020 InfoMat. 2 656
[16] Hirai H, Tsuchiya H, Kamakura Y, Mori N and Ogawa M 2014 J. Appl. Phys. 116 083703
[17] Lee J H, Gul H Z, Kim H, Moon B H, Adhikari S, Kim J H, Choi H, Lee Y H and Lim S C 2017 Nano Lett. 17 673
[18] Preziosi D, Lopez-Mir L, Li X, Cornelissen T, Lee J H, Trier F, Bouzehouane K, Valencia S, Gloter A, Barthélémy A and Bibes M 2018 Nano Lett. 18 2226
[19] Huang Y, Sutter E, Shi N N, Zheng J, Yang T, Englund D, Gao H J and Sutter P 2015 Nano Lett. 9 10612
[20] Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S and Geim A K 2006 Phys. Rev. Lett. 97 187401
[21] Zhao W, Ghorannevis Z, Amara K K, Pang J R, Toh M, Zhang X, Kloc C, Tan P H and Eda G 2013 Nanoscale 5 9677
[22] Zhou H, Wang C, Shaw J C, Cheng R, Chen Y, Huang X, Liu Y, Weiss N O, Lin Z, Huang Y and Duan X 2015 Nano Lett. 15 709
[23] Larentis S, Fallahazad B, Tutuc E, Larentis S, Fallahazad B and Tutuc E 2015 Appl. Phys. Lett. 101 223104
[1] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[4] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[5] Modulation of Schottky barrier in XSi2N4/graphene (X=Mo and W) heterojunctions by biaxial strain
Qian Liang(梁前), Xiang-Yan Luo(罗祥燕), Yi-Xin Wang(王熠欣), Yong-Chao Liang(梁永超), and Quan Xie(谢泉). Chin. Phys. B, 2022, 31(8): 087101.
[6] Half-metallicity induced by out-of-plane electric field on phosphorene nanoribbons
Xiao-Fang Ouyang(欧阳小芳) and Lu Wang(王路). Chin. Phys. B, 2022, 31(7): 077304.
[7] Effects of heterogeneous adoption thresholds on contact-limited social contagions
Dan-Dan Zhao(赵丹丹), Wang-Xin Peng(彭王鑫), Hao Peng(彭浩), and Wei Wang(王伟). Chin. Phys. B, 2022, 31(6): 068906.
[8] Evolution of surfaces and mechanisms of contact electrification between metals and polymers
Lin-Feng Wang(王林锋), Yi Dong(董义), Min-Hao Hu(胡旻昊), Jing Tao(陶静), Jin Li(李进), and Zhen-Dong Dai(戴振东). Chin. Phys. B, 2022, 31(6): 066202.
[9] Hybrid-anode structure designed for a high-performance quasi-vertical GaN Schottky barrier diode
Qiliang Wang(王启亮), Tingting Wang(王婷婷), Taofei Pu(蒲涛飞), Shaoheng Cheng(成绍恒),Xiaobo Li(李小波), Liuan Li(李柳暗), and Jinping Ao(敖金平). Chin. Phys. B, 2022, 31(5): 057702.
[10] Water contact angles on charged surfaces in aerosols
Yu-Tian Shen(申钰田), Ting Lin(林挺), Zhen-Ze Yang(杨镇泽), Yong-Feng Huang(黄永峰), Ji-Yu Xu(徐纪玉), and Sheng Meng(孟胜). Chin. Phys. B, 2022, 31(5): 056801.
[11] Effect of anode area on the sensing mechanism of vertical GaN Schottky barrier diode temperature sensor
Ji-Yao Du(都继瑶), Xiao-Bo Li(李小波), Tao-Fei Pu(蒲涛飞), and Jin-Ping Ao(敖金平). Chin. Phys. B, 2022, 31(4): 047701.
[12] Lateral β-Ga2O3 Schottky barrier diode fabricated on (-201) single crystal substrate and its temperature-dependent current-voltage characteristics
Pei-Pei Ma(马培培), Jun Zheng(郑军), Ya-Bao Zhang(张亚宝), Xiang-Quan Liu(刘香全), Zhi Liu(刘智), Yu-Hua Zuo(左玉华), Chun-Lai Xue(薛春来), and Bu-Wen Cheng(成步文). Chin. Phys. B, 2022, 31(4): 047302.
[13] Micro thermoelectric devices: From principles to innovative applications
Qiulin Liu(刘求林), Guodong Li(李国栋), Hangtian Zhu(朱航天), and Huaizhou Zhao(赵怀周). Chin. Phys. B, 2022, 31(4): 047204.
[14] Anisotropic plasmon dispersion and damping in multilayer 8-Pmmn borophene structures
Kejian Liu(刘可鉴), Jian Li(李健), Qing-Xu Li(李清旭), and Jia-Ji Zhu(朱家骥). Chin. Phys. B, 2022, 31(11): 117303.
[15] Epitaxy of III-nitrides on two-dimensional materials and its applications
Yu Xu(徐俞), Jianfeng Wang(王建峰), Bing Cao(曹冰), and Ke Xu(徐科). Chin. Phys. B, 2022, 31(11): 117702.
No Suggested Reading articles found!