Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 068502    DOI: 10.1088/1674-1056/abea8f
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Reversible waveform conversion between microwave and optical fields in a hybrid opto-electromechanical system

Li-Guo Qin(秦立国)1,2, Zhong-Yang Wang(王中阳)2,†, Jie-Hui Huang(黄接辉)1, Li-Jun Tian(田立君)3, and Shang-Qing Gong(龚尚庆)4,‡
1 School of Mathematics, Physics and Statistics, Shanghai University of Engineering Science, Shanghai 201620, China;
2 Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China;
3 Department of Physics, Shanghai University, Shanghai 200444, China;
4 Department of Physics, East China University of Science and Technology, Shanghai 200237, China
Abstract  We present a scheme of reversible waveform conversion between microwave and optical fields in the hybrid opto-electromechanical system. As an intermediate interface, nanomechanical resonator optomechanically couples both optomechanical cavities in the optical and microwave frequency domains. We find the double-optomechanically induced transparency and achieve coherent signal waveform bi-directional transfer between microwave and optical fields based on quantum interference. In addition, we give an analytical expression of one-to-one correspondence between the microwave field and the optical output field, which intuitively shows the reversible waveform conversion relationship. In particular, by numerical simulations and approximate expression, we demonstrate the conversion effects of the three waveforms and discuss the bi-directional conversion efficiency and the bandwidth. such a hybrid opto- and electro-mechanical device has significant potential functions for electro-optic modulation and waveform conversion of quantum microwave-optical field in optical communications and further quantum networks.
Keywords:  opto-electromechanical systems      photoelectric conversion      cavity quantum electrodynamics      opto-electromechanically induced transparency  
Received:  19 December 2020      Revised:  27 January 2021      Accepted manuscript online:  01 March 2021
PACS:  85.85.+j (Micro- and nano-electromechanical systems (MEMS/NEMS) and devices)  
  84.60.Jt (Photoelectric conversion)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  42.15.Eq (Optical system design)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61605225, 11774089, 12034007,11664018, and 61772295) and the Natural Science Foundation of Shanghai, China (Grant No. 16ZR1448400).
Corresponding Authors:  Zhong-Yang Wang, Shang-Qing Gong     E-mail:  wangzy@sari.ac.cn;sqgong@ecust.edu.cn

Cite this article: 

Li-Guo Qin(秦立国), Zhong-Yang Wang(王中阳), Jie-Hui Huang(黄接辉), Li-Jun Tian(田立君), and Shang-Qing Gong(龚尚庆) Reversible waveform conversion between microwave and optical fields in a hybrid opto-electromechanical system 2021 Chin. Phys. B 30 068502

[1] Andrews R W, Peterson R W, Purdy T P, Cicak K, Simmonds R W, Regal C A and Lehnert K W 2014 Nat. Phys. 10 321
[2] Rueda A, Sedlmeir F, Collodo M C, Vogl U, Stiller B, Schunk G, Strekalov D V, Marquardt C, Fink J M, Painter O, Leuchs G and Schwefel H G L 2016 Optica 3 597
[3] Lambert N J, Rueda A, Sedlmeir F and Schwefel H G L 2020 Adv. Quantum. Technol. 3 1900077
[4] Jiang W, Sarabalis C J, Dahmani Y D, Patel R N, Mayor F M, McKenna T P, Laer R V and Safavi-Naeini A H 2020 Nat. Commun. 11 1166
[5] Tian L 2015 Ann. Phys. 527 1
[6] Wu M, Zeuthen E, Balram K C and Srinivasan K 2020 Phys. Rev. Appl. 13 014027
[7] Jiang W, Sarabalis C J, Dahmani Y D, Patel R N, Mayor F M, McKenna T P, Laer R V and Safavi-Naeini A H 2020 Nat. Commun. 11 1166
[8] Fan L, Zou C L, Cheng R, Guo X, Han X, Gong Z, Wang S and Tang H X 2018 Sci. Adv. 4 eaar4994
[9] Wendin G 2017 Rep. Prog. Phys. 80 106001
[10] Marcos D, Wubs M, Taylor J M, Aguado R, Lukin M D and Sorensen A S 2010 Phys. Rev. Lett. 105 210501
[11] Blatt R and Wineland D 2008 Nature 453 1008
[12] O'Brien J L, Furusawa A and Vučković J 2009 Nat. Photon. 3 687
[13] Lvovsky A I, Sanders B C and Tittel W 2009 Nat. Photon. 3 706
[14] Kok P, Munro W J, Nemoto K, Ralph T C, Dowling J P and Milburn G J 2007 Rev. Mod. Phys. 79 135
[15] Hafezi M, Kim Z, Rolston S L, Orozco L A, Lev B L and Taylor J M 2012 Phys. Rev. A 85 020302
[16] Li J, Yu R and Wu Y 2014 J. Appl. Phys. 116 164306
[17] Bagci T, Simonsen A, Schmid S, Villanueva L G, Zeuthen E, Appel J, Taylor J M, Sorensen A, Usami K, Schliesser A and Polzik E S 2014 Nature 507 81
[18] Balram K C, Davanço M I, Song J D and Srinivasan K 2016 Nat. Photon. 10 346
[19] Barzanjeh S, Abdi M, Milburn G J, Tombesi P and Vitali D 2012 Phys. Rev. Lett. 109 130503
[20] Pei P, Huang H F, Guo Y Q, Zhang X Y and Dai J F 2018 Chin. Phys. B 27 024203
[21] Vainsencher A, Satzinger K J, Peairs G A and Cleland A N 2016 Appl. Phys. Lett. 109 033107
[22] Balram K C, Marcelo M I, Song J D and Srinivasan K 2016 Nat. Photon. 10 346
[23] Higginbotham A P, Burns P S, Urmey M D, Peterson R W, Kampel N S, Brubaker B M, Smith G, Lehnert K W and Regal C A 2018 Nat. Phys. 14 1038
[24] Qin L G, Wang Z Y, Gong S Q and Ma H Y 2017 Photon. Res. 5 481
[25] Agarwal G S and Huang S 2010 Phys. Rev. A 81 041803
[26] Weis S, Riviere R, Deleglise S, Gavartin E, Arcizet O, Schliesser A and Kippenberg T J 2010 Science 330 1520
[27] Lu X H, Si L G, Wang B, Wang X Y and Wu Y 2019 J. Phys. B: At. Mol. Opt. Phys. 52 085401
[28] Liu H, Qin L G, Tian L J and Ma H Y 2019 Chin. Phys. B 28 108502
[29] Si L G, Guo L X, Xiong H and Wu Y 2018 Phys. Rev. A 97 023805
[30] Giovannetti V and Vitali D 2001 Phys. Rev. A 63 023812
[31] Benguria R and Kac M 1981 Phys. Rev. Lett. 46 1
[32] Chakraborty S and Sarma A K 2018 Phys. Rev. A 97 022336
[33] Jia W Z, Wei L F, Li Y and Liu Y 2015 Phys. Rev. A 91 043843
[34] Feng L, You Y, Lin G, Niu Y and Gong S 2020 Quantum. Inf. Process. 19 167
[35] Ma P C, Zhang J Q, Xiao Y, Feng M and Zhang Z M 2014 Phys. Rev. A 90 043825
[36] Gu W J and Zhen Y 2014 Opt. Commun. 333 261
[37] Teufel J D, Li D, Allman M S, Cicak K, Sirois A J, Whittaker J D and Simmonds R W 2011 Nature 471 204
[38] Smith D D, Chang H, Fuller K A, Rosenberger A T and Boyd R W 2004 Phys. Rev. A 69 063804
[39] Field J E 1993 Phys. Rev. A 47 5064
[40] Javan A, Kocharovskaya O, Lee H and Scully M O 2002 Phys. Rev. A 66 013805
[1] Perfect photon absorption based on the optical parametric process
Yang Zhang(张旸), Yu-Bo Ma(马宇波), Xin-Ping Li(李新平), Yu Guo(郭钰), and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(6): 064203.
[2] Absorption interferometer of two-sided cavity
Miao-Di Guo(郭苗迪) and Hong-Mei Li(李红梅). Chin. Phys. B, 2021, 30(5): 054202.
[3] Inhibiting radiative recombination rate to enhance quantum yields in a quantum photocell
Jing-Yi Chen(陈镜伊), Shun-Cai Zhao(赵顺才). Chin. Phys. B, 2020, 29(6): 064207.
[4] Influence of driving ways on measurement of relative phase in a two-atoms cavity system
Daqiang Bao(包大强), Jingping Xu(许静平), Yaping Yang(羊亚平). Chin. Phys. B, 2020, 29(4): 043702.
[5] Opto-electromechanically induced transparency in a hybrid opto-electromechanical system
Hui Liu(刘慧), Li-Guo Qin(秦立国), Li-Jun Tian(田立君), Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2019, 28(10): 108502.
[6] Qubits based on semiconductor quantum dots
Xin Zhang(张鑫), Hai-Ou Li(李海欧), Ke Wang(王柯), Gang Cao(曹刚), Ming Xiao(肖明), Guo-Ping Guo(郭国平). Chin. Phys. B, 2018, 27(2): 020305.
[7] Dynamic properties of atomic collective decay in cavity quantum electrodynamics
Yu-Feng Han(韩玉峰), Cheng-Jie Zhu(朱成杰), Xian-Shan Huang(黄仙山), Ya-Ping Yang(羊亚平). Chin. Phys. B, 2018, 27(12): 124206.
[8] Controllable double electromagnetically induced transparency in a closed four-level-loop cavity–atom system
Miao-Di Guo(郭苗迪), Xue-Mei Su(苏雪梅). Chin. Phys. B, 2017, 26(7): 074207.
[9] Effects of magnetic field on photon-induced quantum transport in a single dot-cavity system
Nzar Rauf Abdullah, Aziz H Fatah, Jabar M A Fatah. Chin. Phys. B, 2016, 25(11): 114206.
[10] Implementation of a one-dimensional quantum walk in both position and phase spaces
Qin Hao (秦豪), Xue Peng (薛鹏). Chin. Phys. B, 2014, 23(1): 010301.
[11] Generation of four-atom Greenberger-Horn-Zeilinger state via adiabatic passage
Zhang Chun-Ling (张春玲), Chen Mei-Feng (陈美锋). Chin. Phys. B, 2013, 22(5): 050307.
[12] Quantum discord dynamics of two qubits in the single-mode cavities
Wang Chen (王晨), Chen Qing-Hu (陈庆虎). Chin. Phys. B, 2013, 22(4): 040304.
[13] Interaction of pair coherent state with a three-level Λ-type atom and generation of a modified Bessel-Gaussian state with a vortex structure
Tang Hui-Qin (唐慧琴), Li Shao-Xin (李绍新), Tang Ying (唐英), Zheng Xiao-Juan (郑小娟), Zhu Kai-Cheng (朱开成). Chin. Phys. B, 2013, 22(2): 020310.
[14] Nonlocal quantum cloning via quantum dots trapped in distant cavities
Yu Tao(于涛), Zhu Ai-Dong(朱爱东), and Zhang Shou(张寿) . Chin. Phys. B, 2012, 21(5): 050304.
[15] Efficient scheme for entangled states and quantum information transfer with trapped atoms in a resonator
Li Peng-Bo(李蓬勃) and Li Fu-Li(李福利) . Chin. Phys. B, 2011, 20(9): 090304.
No Suggested Reading articles found!