INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Reversible waveform conversion between microwave and optical fields in a hybrid opto-electromechanical system |
Li-Guo Qin(秦立国)1,2, Zhong-Yang Wang(王中阳)2,†, Jie-Hui Huang(黄接辉)1, Li-Jun Tian(田立君)3, and Shang-Qing Gong(龚尚庆)4,‡ |
1 School of Mathematics, Physics and Statistics, Shanghai University of Engineering Science, Shanghai 201620, China; 2 Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; 3 Department of Physics, Shanghai University, Shanghai 200444, China; 4 Department of Physics, East China University of Science and Technology, Shanghai 200237, China |
|
|
Abstract We present a scheme of reversible waveform conversion between microwave and optical fields in the hybrid opto-electromechanical system. As an intermediate interface, nanomechanical resonator optomechanically couples both optomechanical cavities in the optical and microwave frequency domains. We find the double-optomechanically induced transparency and achieve coherent signal waveform bi-directional transfer between microwave and optical fields based on quantum interference. In addition, we give an analytical expression of one-to-one correspondence between the microwave field and the optical output field, which intuitively shows the reversible waveform conversion relationship. In particular, by numerical simulations and approximate expression, we demonstrate the conversion effects of the three waveforms and discuss the bi-directional conversion efficiency and the bandwidth. such a hybrid opto- and electro-mechanical device has significant potential functions for electro-optic modulation and waveform conversion of quantum microwave-optical field in optical communications and further quantum networks.
|
Received: 19 December 2020
Revised: 27 January 2021
Accepted manuscript online: 01 March 2021
|
PACS:
|
85.85.+j
|
(Micro- and nano-electromechanical systems (MEMS/NEMS) and devices)
|
|
84.60.Jt
|
(Photoelectric conversion)
|
|
42.50.Pq
|
(Cavity quantum electrodynamics; micromasers)
|
|
42.15.Eq
|
(Optical system design)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61605225, 11774089, 12034007,11664018, and 61772295) and the Natural Science Foundation of Shanghai, China (Grant No. 16ZR1448400). |
Corresponding Authors:
Zhong-Yang Wang, Shang-Qing Gong
E-mail: wangzy@sari.ac.cn;sqgong@ecust.edu.cn
|
Cite this article:
Li-Guo Qin(秦立国), Zhong-Yang Wang(王中阳), Jie-Hui Huang(黄接辉), Li-Jun Tian(田立君), and Shang-Qing Gong(龚尚庆) Reversible waveform conversion between microwave and optical fields in a hybrid opto-electromechanical system 2021 Chin. Phys. B 30 068502
|
[1] Andrews R W, Peterson R W, Purdy T P, Cicak K, Simmonds R W, Regal C A and Lehnert K W 2014 Nat. Phys. 10 321 [2] Rueda A, Sedlmeir F, Collodo M C, Vogl U, Stiller B, Schunk G, Strekalov D V, Marquardt C, Fink J M, Painter O, Leuchs G and Schwefel H G L 2016 Optica 3 597 [3] Lambert N J, Rueda A, Sedlmeir F and Schwefel H G L 2020 Adv. Quantum. Technol. 3 1900077 [4] Jiang W, Sarabalis C J, Dahmani Y D, Patel R N, Mayor F M, McKenna T P, Laer R V and Safavi-Naeini A H 2020 Nat. Commun. 11 1166 [5] Tian L 2015 Ann. Phys. 527 1 [6] Wu M, Zeuthen E, Balram K C and Srinivasan K 2020 Phys. Rev. Appl. 13 014027 [7] Jiang W, Sarabalis C J, Dahmani Y D, Patel R N, Mayor F M, McKenna T P, Laer R V and Safavi-Naeini A H 2020 Nat. Commun. 11 1166 [8] Fan L, Zou C L, Cheng R, Guo X, Han X, Gong Z, Wang S and Tang H X 2018 Sci. Adv. 4 eaar4994 [9] Wendin G 2017 Rep. Prog. Phys. 80 106001 [10] Marcos D, Wubs M, Taylor J M, Aguado R, Lukin M D and Sorensen A S 2010 Phys. Rev. Lett. 105 210501 [11] Blatt R and Wineland D 2008 Nature 453 1008 [12] O'Brien J L, Furusawa A and Vučković J 2009 Nat. Photon. 3 687 [13] Lvovsky A I, Sanders B C and Tittel W 2009 Nat. Photon. 3 706 [14] Kok P, Munro W J, Nemoto K, Ralph T C, Dowling J P and Milburn G J 2007 Rev. Mod. Phys. 79 135 [15] Hafezi M, Kim Z, Rolston S L, Orozco L A, Lev B L and Taylor J M 2012 Phys. Rev. A 85 020302 [16] Li J, Yu R and Wu Y 2014 J. Appl. Phys. 116 164306 [17] Bagci T, Simonsen A, Schmid S, Villanueva L G, Zeuthen E, Appel J, Taylor J M, Sorensen A, Usami K, Schliesser A and Polzik E S 2014 Nature 507 81 [18] Balram K C, Davanço M I, Song J D and Srinivasan K 2016 Nat. Photon. 10 346 [19] Barzanjeh S, Abdi M, Milburn G J, Tombesi P and Vitali D 2012 Phys. Rev. Lett. 109 130503 [20] Pei P, Huang H F, Guo Y Q, Zhang X Y and Dai J F 2018 Chin. Phys. B 27 024203 [21] Vainsencher A, Satzinger K J, Peairs G A and Cleland A N 2016 Appl. Phys. Lett. 109 033107 [22] Balram K C, Marcelo M I, Song J D and Srinivasan K 2016 Nat. Photon. 10 346 [23] Higginbotham A P, Burns P S, Urmey M D, Peterson R W, Kampel N S, Brubaker B M, Smith G, Lehnert K W and Regal C A 2018 Nat. Phys. 14 1038 [24] Qin L G, Wang Z Y, Gong S Q and Ma H Y 2017 Photon. Res. 5 481 [25] Agarwal G S and Huang S 2010 Phys. Rev. A 81 041803 [26] Weis S, Riviere R, Deleglise S, Gavartin E, Arcizet O, Schliesser A and Kippenberg T J 2010 Science 330 1520 [27] Lu X H, Si L G, Wang B, Wang X Y and Wu Y 2019 J. Phys. B: At. Mol. Opt. Phys. 52 085401 [28] Liu H, Qin L G, Tian L J and Ma H Y 2019 Chin. Phys. B 28 108502 [29] Si L G, Guo L X, Xiong H and Wu Y 2018 Phys. Rev. A 97 023805 [30] Giovannetti V and Vitali D 2001 Phys. Rev. A 63 023812 [31] Benguria R and Kac M 1981 Phys. Rev. Lett. 46 1 [32] Chakraborty S and Sarma A K 2018 Phys. Rev. A 97 022336 [33] Jia W Z, Wei L F, Li Y and Liu Y 2015 Phys. Rev. A 91 043843 [34] Feng L, You Y, Lin G, Niu Y and Gong S 2020 Quantum. Inf. Process. 19 167 [35] Ma P C, Zhang J Q, Xiao Y, Feng M and Zhang Z M 2014 Phys. Rev. A 90 043825 [36] Gu W J and Zhen Y 2014 Opt. Commun. 333 261 [37] Teufel J D, Li D, Allman M S, Cicak K, Sirois A J, Whittaker J D and Simmonds R W 2011 Nature 471 204 [38] Smith D D, Chang H, Fuller K A, Rosenberger A T and Boyd R W 2004 Phys. Rev. A 69 063804 [39] Field J E 1993 Phys. Rev. A 47 5064 [40] Javan A, Kocharovskaya O, Lee H and Scully M O 2002 Phys. Rev. A 66 013805 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|