Special Issue:
SPECIAL TOPIC — Ion beam modification of materials and applications
|
SPECIAL TOPIC—Ion beam modification of materials and applications |
Prev
Next
|
|
|
Structure and luminescence of a-plane GaN on r-plane sapphire substrate modified by Si implantation |
Lijie Huang(黄黎杰)1,7, Lin Li(李琳)2,3, Zhen Shang(尚震)2, Mao Wang(王茂)2, Junjie Kang(康俊杰)1, Wei Luo(罗巍)1, Zhiwen Liang(梁智文)5, Slawomir Prucnal2, Ulrich Kentsch2, Yanda Ji(吉彦达)4, Fabi Zhang(张法碧)7, Qi Wang(王琦)5, Ye Yuan(袁冶)1,†, Qian Sun(孙钱)6, Shengqiang Zhou(周生强)2, and Xinqiang Wang(王新强)1,5 |
1 Songshan Lake Materials Laboratory, Dongguan 523808, China; 2 Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, 01314, Dresden, Germany; 3 College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China; 4 Department of Applied Physics, College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China; 5 Dongguan Institute of Optoelectronics, Peking University, Dongguan 523808, China; 6 Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics(SINANO), Chinese Academy of Sciences(CAS), Suzhou 215123, China; 7 Guangxi Key Laboratory of Precision Navigation Technology and Application, Guilin University of Electronic Technology, Guilin 541004, China |
|
|
Abstract We show the structural and optical properties of non-polar a-plane GaN epitaxial films modified by Si ion implantation. Upon gradually raising Si fluences from 5×1013 cm-2 to 5×1015 cm-2, the n-type dopant concentration gradually increases from 4.6×1018 cm-2 to 4.5×1020 cm-2, while the generated vacancy density accordingly raises from 3.7×1013 cm-2 to 3.8×1015 cm-2. Moreover, despite that the implantation enhances structural disorder, the epitaxial structure of the implanted region is still well preserved which is confirmed by Rutherford backscattering channeling spectrometry measurements. The monotonical uniaxial lattice expansion along the a direction (out-of-plane direction) is observed as a function of fluences till 1×1015 cm-2, which ceases at the overdose of 5×1015 cm-2 due to the partial amorphization in the surface region. Upon raising irradiation dose, a yellow emission in the as-grown sample is gradually quenched, probably due to the irradiation-induced generation of non-radiative recombination centers.
|
Received: 10 November 2020
Revised: 27 December 2020
Accepted manuscript online: 30 December 2020
|
PACS:
|
61.72.uj
|
(III-V and II-VI semiconductors)
|
|
Fund: Project supported by the Key-Area Research and Development Program of Guangdong Province, China (Grant Nos. 2019B010132001, 2020B010174003, and 2019B121204004), the Basic and Application Basic Research Foundation of Guangdong Province, China (Grant Nos. 2020A1515110891 and 2019A1515111053), and the Fund from the Ion Beam Center (IBC) at HZDR. |
Corresponding Authors:
Ye Yuan
E-mail: yuanye@sslab.org.cn
|
Cite this article:
Lijie Huang(黄黎杰), Lin Li(李琳), Zhen Shang(尚震), Mao Wang(王茂), Junjie Kang(康俊杰), Wei Luo(罗巍), Zhiwen Liang(梁智文), Slawomir Prucnal, Ulrich Kentsch, Yanda Ji(吉彦达), Fabi Zhang(张法碧), Qi Wang(王琦), Ye Yuan(袁冶), Qian Sun(孙钱), Shengqiang Zhou(周生强), and Xinqiang Wang(王新强) Structure and luminescence of a-plane GaN on r-plane sapphire substrate modified by Si implantation 2021 Chin. Phys. B 30 056104
|
[1] Kane M H and Arefin N 2014 Nitride Semiconductor Light-Emitting Diodes (LEDs) pp. 99-143 [2] Miller D A B, Chemla D S, Damen T C, Gossard A C, Wiegmann W, Wood T H and Burrus C A 1984 Phys. Rev. Lett. 53 2173 [3] Takeuchi T, Sota S, Katsuragawa M, Komori M, Takeuchi H, Amano H and Akasaki I 1997 Jpn. J. Appl. Phys. 36 L382 [4] Reich C, M. Guttmann, M. Feneberg, Wernicke T, Mehnke F, Kuhn C, Rass J, Lapeyrade M, Einfeldt S, Knauer A, Kueller V, Weyers M, Goldhahn R and Kneissl M 2015 Appl. Phys. Lett. 107 142101 [5] Li X H, Kao T T, Satter M M, Wei Y O, Wang S, Xie H, Shen S C, Yoder P D, Fischer A M, Ponce F A, Detchprohm T, Dupuis R D 2015 Appl. Phys. Lett. 106 041115 [6] Nagasawa Y and Hirano A 2018 Appl. Sci. 8 1264 [7] Iso K, Yamada H, Hirasawa H, Fellows N, Saito M, Fujito K, DenBaars S P, Speck J S and Nakamura S 2007 Jpn. J. Appl. Phys. 46 L960 [8] Holder C, Speck J S, DenBaars S P, Nakamura S and Feezell D 2012 Appl. Phys. Express 5 092104 [9] Kim K C, Schmidt M C, Sato H, Wu F, Fellows N, Saito M, Fujito K, Speck J S, Nakamura S and DenBaars S P 2007 Phys. Status Solidi Rapid Res. Lett. 1 125 [10] Lorenz K, Wendler E, Cubero A R, Catarino N, Chauvat M P, Schwaiger S, Scholz F, Alves E and Ruterana P 2017 Acta Materialia 123 177 [11] Zolper J C, Tan H H, Williams J S, Zou J, Cockayne D J H, Pearton S J, Crawford M H and Karlicek Jr R F 1997 Appl. Phys. Lett. 70 2729 [12] Pong B J, Pan C J, Teng Y C, Chi G C, Li W H and Lee K C 1998 J. Appl. Phys. 83 5992 [13] Kobayashi H and Gibson W M 1998 Appl. Phys. Lett. 73 1406 [14] Sun Q, Ko T S, Yerino C D, Zhang Y, Lee I H, Han J, Lu T C, Kuo H C and Wang S C 2009 Jpn. J. Appl. Phys. 48 071002 [15] Kong B H, Sun Q, Yerino C D, Ko T S, Leung B, Cho H K and Ha J 2009 J. Appl. Phys. 106 123519 [16] Ziegler J F 2004 Nucl. Instrum. Methods Phys. Res. B 219 1027 [17] Lorenz K, Wahl U, Alves E, Wojtowicz T, Ruteran P, Ruffenach S and Briot O 2004 Superlattices Microstruct. 36 737 [18] Azarov A Y, Jensen J, Hallén A and Aggerstam T 2008 J. Appl. Phys. 104 053509 [19] Usman M, Hallén A, Nazir A 2015 J. Phys. D: Appl. Phys. 48 455107 [20] Parikh N, Suvkhanov A, Lioubtchenko M, Carlson E, Bremser M, Bray D, Davis R and Hunn J 1997 Nucl. Instrum. Methods Phys. Res. B 127128 463 [21] Kobayashi H and Gibson W M 1999 J. Vac. Sci. Technol. 17 2132 [22] Lorenz K, Wahl U, Alves E, Dalmasso S, Martin R W, O'Donnell K P, Ruffenach S, Briot O 2004 Appl. Phys. Lett. 85 2712 [23] Kadleikova M, Breza J and Vesely M 2001 Microelectronics J. 32 955 [24] Porto S P S and Krishnan R S 1967 J. Chem. Phys. 47 1009 [25] Harima H 2002 J. Phys.: Condens. Matter. 14 R967 [26] Murugkar S and Merlin R 1995 J. Appl. Phys. 77 6042 [27] Gao H, Yan F, Zhang H, Li J, Wang J and Yan J 2007 J. Appl. Phys. 101 103533 [28] Limmer W, Ritter W, Sauer R, Mensching B, Liu C and Rauschenbach B 1998 Appl. Phys. Lett. 72 2589 [29] Siegle H, Kaczmarczyk G, Filippidis L, Litvinchuk A P, Hoffmann A and Thomsen C 1997 Phys. Rev. B 55 7000 [30] Catarino N, Nogales E, Franco N, Darakchieva V, Miranda S M C, Mendez B, Alves E, Marques J G and Lorenz K 2012 Europhys. Lett. 97 68004 [31] Liu C, Mensching B, Volz K and Rauschenbach B 1997 Appl. Phys. Lett. 71 2313 [32] Julkarnain N K M, Fukuda T and Arakawa Y 2016 Opt. Mater. 60 481 [33] Reshchikov M A, McNamara J D, Zhang F, Monavarian M, Usikov A, Helava H, Makarov Y and Morkoç H 2016 Phys. Rev. B 94 035201 [34] Hofmann D M, Kovalev D, Steude G, Meyer B K, Hoffmann A, Eckey L, Heitz R, Detchprom T, Amano H and Akasaki I 1995 Phy. Rev. B 52 16702 [35] Chen H M, Chen Y F, Lee M C and Feng M S 1997 Phys. Rev. B 56 6942 [36] Lee M, Vu T K O, Lee K S, Kim E K and Park S 2018 Sci. Rep. 8 7814 [37] Buyanova I A, Wagner M, Chen W M, Monemar B, Lindström J L, Amano H and Akasaki I 1998 Appl. Phys. Lett. 73 2968 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|