|
|
High-throughput identification of one-dimensional atomic wires and first principles calculations of their electronic states |
Feng Lu(卢峰)1, Jintao Cui(崔锦韬)1, Pan Liu(刘盼)1, Meichen Lin(林玫辰)1, Yahui Cheng(程雅慧)1, Hui Liu(刘晖)1, Weichao Wang(王卫超)1, Kyeongjae Cho2, and Wei-Hua Wang(王维华)1,† |
1 Department of Electronic Science and Engineering, and Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, Engineering Research Center of Thin Film Optoelectronics Technology(Ministry of Education), Nankai University, Tianjin 300350, China; 2 Department of Material Science and Engineering, the University of Texas at Dallas, Richardson, 75080, USA |
|
|
Abstract Low dimensional materials are suitable candidates applying in next-generation high-performance electronic, optoelectronic, and energy storage devices because of their uniquely physical and chemical properties. In particular, one-dimensional (1D) atomic wires (AWs) exfoliating from 1D van der Waals (vdW) bulks are more promising in next generation nanometer (nm) even sub-nm device applications owing to their width of few-atoms scale and free dandling bonds states. Although several 1D AWs have been experimentally prepared, few 1D AW candidates could be practically applied in devices owing to lack of enough suitable 1D AWs. Herein, 367 kinds of 1D AWs have been screened and the corresponding computational database including structures, electronic structures, magnetic states, and stabilities of these 1D AWs has been organized and established. Among these systems, unary and binary 1D AWs with relatively small exfoliation energy are thermodynamically stable and theoretically feasible to be exfoliated. More significantly, rich quantum states emerge, such as 1D semiconductors, 1D metals, 1D semimetals, and 1D magnetism. This database will offer an ideal platform to further explore exotic quantum states and exploit practical device applications using 1D materials. The database are openly available at http://www.dx.doi.org/10.11922/sciencedb.j00113.00004.
|
Received: 04 December 2020
Revised: 09 January 2021
Accepted manuscript online: 13 January 2021
|
PACS:
|
73.22.-f
|
(Electronic structure of nanoscale materials and related systems)
|
|
73.90.+f
|
(Other topics in electronic structure and electrical properties of surfaces, interfaces, thin films, and low-dimensional structures)
|
|
75.75.-c
|
(Magnetic properties of nanostructures)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFE0129000) and the National Natural Science Foundation of China (Grant Nos. 51871121, 11874223, and 11404172). |
Corresponding Authors:
Wei-Hua Wang
E-mail: whwangnk@nankai.edu.cn
|
Cite this article:
Feng Lu(卢峰), Jintao Cui(崔锦韬), Pan Liu(刘盼), Meichen Lin(林玫辰), Yahui Cheng(程雅慧), Hui Liu(刘晖), Weichao Wang(王卫超), Kyeongjae Cho, and Wei-Hua Wang(王维华) High-throughput identification of one-dimensional atomic wires and first principles calculations of their electronic states 2021 Chin. Phys. B 30 057304
|
[1] Geim A K and Grigorieva I V 2013 Nature 499 419 [2] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotech. 7 699 [3] Yang C, Liu Z, Shi W and Zhang C 2019 Appl. Phys. Express 12 082009 [4] Jiang P, Tao X, Kang L, Hao H, Song L, Lan J, Zheng X, Zhang L and Zeng Z 2017 J. Mater. Chem. C 5 9066 [5] Liu P, Lu F, Wu M, Luo X, Cheng Y, Wang X, Wang W, Wang W H, Liu H and Cho K 2017 J. Mater. Chem. C 5 9066 [6] Wu M, Liu P, Xin B, Li L, Dong H, Cheng Y, Wang W, Lu F, Cho K, Wang W H and Liu H 2019 Appl. Phys. Lett. 114 171601 [7] Chen W, Qu Y, Yao L, Hou X, Shi X and Pan H 2018 J. Mater. Chem. A 6 8021 [8] Gong C, Kim E M, Wang Y, Lee G and Zhang X 2019 Nat. Commun. 10 2657 [9] Ma Xin, Zhang R, An C, Wu S, Hu X and Liu J 2019 Chin. Phys. B 28 037803 [10] Song L, Zhang L, Guan Y, Lu J, Yan C and Cai J 2019 Chin. Phys. B 28 037101 [11] Ju S, Wu M, Yang H, Wang N, Zhang Y, Wu Peng, Wang P, Zhang B, Mu K, Li Y, Guan D, Qian D, Lu F, Liu D, Wang W H, Chen X and Sun Z 2018 Chin. Phys. Lett. 35 077102 [12] Xie Y, Feng J, Xiang H and Gong X 2019 Chin. Phys. Lett. 36 056801 [13] Pan B, Xiao J, Li J, Liu P, Wang C and Yang G 2015 Sci. Adv. 1 e1500857 [14] Li X, Lv H, Dai J, Ma L, Zeng X C, Wu X and Yang J 2017 J. Am. Chem. Soc. 139 6290 [15] Kuc A, Zibouche N and Heine T 2011 Phys. Rev. B 83 245213 [16] Ugeda M M, Bradley A J, Shi S F, Felipe H, Zhang Y, Qiu D Y, Ruan W, Mo S K, Hussain Z, Shen Z X, Wang F, Louie S G and Crommie M F 2014 Nat. Mater. 13 1091 [17] Lee J, Schmitt F, Moore R, Johnston S, Cui Y T, Li W, Yi M, Liu Z, Hashimoto M, Zhang Y, Lu D H, Devereaux T P, Lee D H and Shen Z X 2014 Nature 515 245 [18] Yan H, Hohman J N, Li F H, Jia C, Solis-Ibarra D, Wu B, Dahl J, Carlson R, Tkachenko B A, Fokin A A, Schreiner P R,Vailions A, Kim T R, Devereaux T P, Shen Z X and Melosh N A 2017 Nat. Mater. 16 349 [19] Peierls R E 1955 Quantum theory of solids (Oxford: Clarendon) [20] Liu M, Artyukhov V I and Yakobson B I 2017 J. Am. Chem. Soc. 139 2111 [21] Tomonaga S 1950 Prog. Theor. Phys. 5 544 [22] Luttinger J M 1963 J. Math. Phys. 4 1154 [23] Japaridze G I and Nersesyan A A 2019 Phys. Rev. B 99 035134 [24] Tang Z K, Zhang L, Wang N, Zhang X X, Wen G H, Li G D, Wang J N, Chan C T and Sheng P 2001 Science 292 2462 [25] Caruso F, Filip M R and Giustino F 2015 Phys. Rev. B 92 125134 [26] Lee W G, Chae S, Chung Y K, Oh S, Choi J Y and Huh J 2019 Phys. Status Solidi RRL 13 1800517 [27] Zhu H, Wang Q, Zhang C, Addou R, Cho K, Wallace R M and Kim M J 2017 Adv. Mater. 29 1606264 [28] Wan Y, Sun Y, Wu X and Yang J 2018 J. Phys. Chem. C 122 989 [29] Sen R and Johari P 2019 ACS Appl. Mater. Inter. 11 12733 [30] Zhang Z, Murayama T, Sadakane M, Ariga H, Yasuda N, Sakaguchi N, Asakura K and Ueda W 2015 Nat. Commun. 6 7731 [31] Peng B, Xu K, Zhang H, Ning Z, Shao H, Ni G, Li J, Zhu Y, Zhu H and Soukoulis C M 2018 Adv. Theory Simul. 1 1700005 [32] Gao Y and Xu B 2018 ACS Appl. Mater. Inter. 10 14221 [33] Liu Y, Huang Y and Duan X 2019 Nature 567 323 [34] Cheon G, Duerloo K N, Sendek A D, Porter C, Chen Y and Reed E J 2017 Nano Lett. 17 1915 [35] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [36] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [37] Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104 [38] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106 [39] Togo A and Tanaka I 2015 Scr. Mater. 108 1 [40] Hellenbrandt M 2004 Crystallogr. Rev. 10 17 [41] Belsky A, Hellenbrandt M, Karen V L and Luksch P 2002 Acta Crystallogr. Sect. B Struct. Sci. 58 364 [42] Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G and Persson K A 2013 APL Mater. 1 011002 [43] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133 [44] Vergniory M G, Elcoro L, Felser C, Regnault N, Bernevig B A and Wang Z 2019 Nature 566 480 [45] Tang F, Po H C, Vishwanath A and Wan X 2019 Nature 566 486 [46] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C and Jarillo-Herrero P 2018 Nature 556 80 [47] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43 [48] Choudhary K, Kalish I, Beams R and Tavazza F 2017 Sci. Rep. 7 5179 [49] Watts M C, Picco L, Russell-Pavier F S, Cullen P L, Miller T S, Bartus S P, Payton O D, Skipper N T, Tileli V and Howard C A 2019 Nature 568 216 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|