Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(4): 040502    DOI: 10.1088/1674-1056/abd470
GENERAL Prev   Next  

Effects of notch structures on DC and RF performances of AlGaN/GaN high electron mobility transistors

Hao Zou(邹浩), Lin-An Yang(杨林安), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃)
1 The State Key Discipline Laboratory of Wide Bandgap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China
Abstract  The effects of various notch structures on direct current (DC) and radio frequency (RF) performances of AlGaN/GaN high electron mobility transistors (HEMTs) are analyzed. The AlGaN/GaN HEMTs, each with a 0.8-μm gate length, 50-μm gate width, and 3-μm source-drain distance in various notch structures at the AlGaN/GaN barrier layer, are manufactured to achieve the desired DC and RF characteristics. The maximum drain current (I ds,max), pinch-off voltage (V th), maximum transconductance (g m), gate voltage swing (GVS), subthreshold current, gate leakage current, pulsed I-V characteristics, breakdown voltage, cut-off frequency (f T), and maximum oscillation frequency (fmax) are investigated. The results show that the double-notch structure HEMT has a 30% improvement of gate voltage swing, a 42.2% improvement of breakdown voltage, and a 9% improvement of cut-off frequency compared with the conventional HEMT. The notch structure also has a good suppression of the current collapse.
Keywords:  AlGaN/GaN      high electron mobility transistors (HEMTs)      barrier layer      notch  
Received:  06 October 2020      Revised:  13 November 2020      Accepted manuscript online:  17 December 2020
PACS:  05.10.Ln (Monte Carlo methods)  
  61.72.uj (III-V and II-VI semiconductors)  
  85.30.Mn (Junction breakdown and tunneling devices (including resonance tunneling devices))  
  52.70.Gw (Radio-frequency and microwave measurements)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61674117 and 61974108) and the State Key Discipline Laboratory of Wide Bandgap Semiconductor Technology of Xidian University, China.
Corresponding Authors:  Corresponding author. E-mail: layang@xidian.edu.cn   

Cite this article: 

Hao Zou(邹浩), Lin-An Yang(杨林安), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃) Effects of notch structures on DC and RF performances of AlGaN/GaN high electron mobility transistors 2021 Chin. Phys. B 30 040502

1 Mishra U K, Parikh P and Wu Y F 2002 Proc. IEEE 90 1022
2 Shur M S 1998 Solid-State Electron 42 2131
3 Saito W, Takada Y, Kuraguchi M, Tsuda K, Omura I, Ogura T and Ohashi H 2003 IEEE Trans. Electron Dev. 50 2528
4 Mishra U K, Chen L, Kazior T E and Wu Y F 2008 Proc. IEEE 96 287
5 Roccaforte F, Fiorenza P, Greco G, Nigro R L, Giannazzo F, Lucolano F and Saggio M 2018 Microelectronic Engineering 187-188 66
6 Ikeda N, Kaya S, Li J, Sato Y, Kato S and Yoshida S 2008 20th International Symposium on Power Semiconductor Devices and IC's, ISPSD'08 287-290
7 Kwak H T, Chang S B, Kim H J, Jang K W, Yoon H, Lee S H, Lim J W and Kim H S 2018 Appl. Sci. 8 974
8 Kwak H T, Chang S B, Jung H G and Kim H S 2018 J. Nanosci. Nanotechnol. 18 5860
9 Wu Y F, Saxler A, Moore M, Smith R P, Sheppard S, Chavarkar P M, Wisleder T, Mishra U K and Parikh P 2004 IEEE Electron Dev. Lett. 25 117
10 Xing H, Dora Y, Chini A, Heikman S, Keller S and Mishra U K 2004 IEEE Electron Dev. Lett. 25 161
11 Karmalkar S and Mishra U K 2001 IEEE Trans. Electron Dev. 48 1515
12 Shealy J R, Kaper V, Tilak V, Prunty T, Smart J A, Green B and Eastman L F 2002 J. Phys.: Condens. Matter 14 3499
13 Kumar V, Chen G, Guo S and Adesida I 2006 IEEE Trans. Electron Dev. 53 1477
14 Lin C K, Wang W K, Hwu M J and Chan Y J 2004 J. Vac. Sci. Technol. B 22 4
15 Wang X L, Chen T S, Xiao H L, Wang C M, Hu G X, Luo W J, Tang J, Guo L C and Li J M 2008 Solid-State Electron. 52 926
16 Palaciosa T, Snow E, Pei Y, Chakraborty A, Keller S, Denbaars S P and Mishra U K 2005 IEEE International Electron Devices Meeting, 5 December, 2005, Washington, DC, USA
17 Pei Y, Poblenz C, Corrion A L, Chu R, Shen L, Speck J S and Mishra U K 2008 Electron. Lett. 44 9
18 Wang Y, Yang L A, Mao W, Long S and Hao Y 2013 IEEE Trans. Electron Dev. 60 1600
19 Jia H J, Zhang H, Luo Y H and Yang Z H 2015 Mater. Sci. Semicond. Process. 40 650
20 Jia H J, Wu Q Y, Luo Y H and Yang Y T 2017 Superlattices and Microstructures 111 841
21 Razavi S M, Zahiri S H and Hosseini S E 2017 Pramana J. Phys. 88 58
22 Jia H, Luo Y, Zhang H, Xing D and Ma P M 2017 Superlattices and Microstructures 101 315
23 Jia H, Zhang H, Luo Y and Yang Z H 2015 Mater. Sci. Semicond. Process. 40 650
[1] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[2] Simulation design of normally-off AlGaN/GaN high-electron-mobility transistors with p-GaN Schottky hybrid gate
Yun-Long He(何云龙), Fang Zhang(张方), Kai Liu(刘凯), Yue-Hua Hong(洪悦华), Xue-Feng Zheng(郑雪峰),Chong Wang(王冲), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068501.
[3] Current oscillation in GaN-HEMTs with p-GaN islands buried layer for terahertz applications
Wen-Lu Yang(杨文璐), Lin-An Yang(杨林安), Fei-Xiang Shen(申飞翔), Hao Zou(邹浩), Yang Li(李杨), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 058505.
[4] Improved device performance of recessed-gate AlGaN/GaN HEMTs by using in-situ N2O radical treatment
Xinchuang Zhang(张新创), Mei Wu(武玫), Bin Hou(侯斌), Xuerui Niu(牛雪锐), Hao Lu(芦浩), Fuchun Jia(贾富春), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 057301.
[5] High power-added-efficiency AlGaN/GaN HEMTs fabricated by atomic level controlled etching
Xinchuang Zhang(张新创), Bin Hou(侯斌), Fuchun Jia(贾富春), Hao Lu(芦浩), Xuerui Niu(牛雪锐), Mei Wu(武玫), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027301.
[6] High linearity AlGaN/GaN HEMT with double-Vth coupling for millimeter-wave applications
Pengfei Wang(王鹏飞), Minhan Mi(宓珉瀚), Meng Zhang(张濛), Jiejie Zhu(祝杰杰), Yuwei Zhou(周雨威), Jielong Liu(刘捷龙), Sijia Liu(刘思佳), Ling Yang(杨凌), Bin Hou(侯斌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027103.
[7] Normally-off AlGaN/GaN heterojunction field-effect transistors with in-situ AlN gate insulator
Taofei Pu(蒲涛飞), Shuqiang Liu(刘树强), Xiaobo Li(李小波), Ting-Ting Wang(王婷婷), Jiyao Du(都继瑶), Liuan Li(李柳暗), Liang He(何亮), Xinke Liu(刘新科), and Jin-Ping Ao(敖金平). Chin. Phys. B, 2022, 31(12): 127701.
[8] Fluorine-plasma treated AlGaN/GaN high electronic mobility transistors under off-state overdrive stress
Dongyan Zhao(赵东艳), Yubo Wang(王于波), Yanning Chen(陈燕宁), Jin Shao(邵瑾), Zhen Fu(付振), Fang Liu(刘芳), Yanrong Cao(曹艳荣), Faqiang Zhao(赵法强), Mingchen Zhong(钟明琛), Yasong Zhang(张亚松), Maodan Ma(马毛旦), Hanghang Lv(吕航航), Zhiheng Wang(王志恒), Ling Lv(吕玲), Xuefeng Zheng(郑雪峰), and Xiaohua Ma(马晓华). Chin. Phys. B, 2022, 31(11): 117301.
[9] A novel Si-rich SiN bilayer passivation with thin-barrier AlGaN/GaN HEMTs for high performance millimeter-wave applications
Zhihong Chen(陈治宏), Minhan Mi(宓珉瀚), Jielong Liu(刘捷龙), Pengfei Wang(王鹏飞), Yuwei Zhou(周雨威), Meng Zhang(张濛), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(11): 117105.
[10] High-frequency enhancement-mode millimeterwave AlGaN/GaN HEMT with an fT/fmax over 100 GHz/200 GHz
Sheng Wu(武盛), Minhan Mi(宓珉瀚), Xiaohua Ma(马晓华), Ling Yang(杨凌), Bin Hou(侯斌), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(8): 087102.
[11] Degradation of gate-recessed MOS-HEMTs and conventional HEMTs under DC electrical stress
Yi-Dong Yuan(原义栋), Dong-Yan Zhao(赵东艳), Yan-Rong Cao(曹艳荣), Yu-Bo Wang(王于波), Jin Shao(邵瑾), Yan-Ning Chen(陈燕宁), Wen-Long He(何文龙), Jian Du(杜剑), Min Wang(王敏), Ye-Ling Peng(彭业凌), Hong-Tao Zhang(张宏涛), Zhen Fu(付振), Chen Ren(任晨), Fang Liu(刘芳), Long-Tao Zhang(张龙涛), Yang Zhao(赵扬), Ling Lv(吕玲), Yi-Qiang Zhao(赵毅强), Xue-Feng Zheng(郑雪峰), Zhi-Mei Zhou(周芝梅), Yong Wan(万勇), and Xiao-Hua Ma(马晓华). Chin. Phys. B, 2021, 30(7): 077305.
[12] Ferroelectric effect and equivalent polarization charge model of PbZr0.2Ti0.8O3 on AlGaN/GaN MIS-HEMT
Yao-Peng Zhao(赵垚澎), Chong Wang(王冲), Xue-Feng Zheng(郑雪峰), Xiao-Hua Ma(马晓华), Ang Li(李昂), Kai Liu(刘凯), Yun-Long He(何云龙), Xiao-Li Lu(陆小力) and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(5): 057302.
[13] Distribution of donor states on the surfaceof AlGaN/GaN heterostructures
Yue-Bo Liu(柳月波), Hong-Hui Liu(刘红辉), Jun-Yu Shen(沈俊宇), Wan-Qing Yao(姚婉青), Feng-Ge Wang(王风格), Yuan Ren(任远), Min-Jie Zhang(张敏杰), Zhi-Sheng Wu(吴志盛), Yang Liu(刘扬), and Bai-Jun Zhang(张佰君). Chin. Phys. B, 2021, 30(12): 128102.
[14] Abnormal phenomenon of source-drain current of AlGaN/GaN heterostructure device under UV/visible light irradiation
Yue-Bo Liu(柳月波), Jun-Yu Shen(沈俊宇), Jie-Ying Xing(邢洁莹), Wan-Qing Yao(姚婉青), Hong-Hui Liu(刘红辉), Ya-Qiong Dai(戴雅琼), Long-Kun Yang(杨隆坤), Feng-Ge Wang(王风格), Yuan Ren(任远), Min-Jie Zhang(张敏杰), Zhi-Sheng Wu(吴志盛), Yang Liu(刘扬), and Bai-Jun Zhang(张佰君). Chin. Phys. B, 2021, 30(11): 117302.
[15] Impact of oxygen in electrical properties and hot-carrier stress-induced degradation of GaN high electron mobility transistors
Lixiang Chen(陈丽香), Min Ma(马敏), Jiecheng Cao(曹杰程), Jiawei Sun(孙佳惟), Miaoling Que(阙妙玲), and Yunfei Sun(孙云飞). Chin. Phys. B, 2021, 30(10): 108502.
No Suggested Reading articles found!