Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(9): 094209    DOI: 10.1088/1674-1056/ab327a
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Refractive index sensor based on high-order surface plasmon resonance in gold nanofilm coated photonic crystal fiber

Zhen-Kai Fan(范振凯)1, Shao-Bo Fang(方少波)3,4, Shu-Guang Li(李曙光)2, Zhi-Yi Wei(魏志义)3,4
1 School of Information Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China;
2 State Key Laboratory of Metastable Materials Science and Technology, and Key Laboratory of Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China;
3 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
4 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

We propose a novel kind of wide-range refractive index optical sensor based on photonic crystal fiber (PCF) covered with nano-ring gold film. The refractive index sensing performance of the PCF sensor is analyzed and simulated by the finite element method (FEM). The refractive index liquid is infiltrated into the cladding air hole of the PCF. By comparing the sensing performance of two kinds of photonic crystal fiber structures, a wide range and high sensitivity structure is optimized. The surface plasmon resonance (SPR) excitation material is chose as gold, and large gold nanorings are embedded around the first cladding air hole of the PCF. The higher order surface plasmon modes are generated in this designed optical fiber structure. The resonance coupling between the fundamental mode and the 5th order surface plasmon polariton (SPP) modes is excited when the phase matching condition is matched. Therefore, the 3rd loss peaks appear obvious red-shift with the increase of the analyte refractive index, which shows a remarkable polynomial fitting law. The fitnesses of two structures are 0.99 and 0.98, respectively. When the range of refractive indices is from 1.40 to 1.43, the two kinds of sensors have high linear sensitivities of 1604 nm/RIU and 3978 nm/RIU, respectively.

Keywords:  surface plasmon resonance      photonic crystal fiber      sensor  
Received:  22 January 2019      Revised:  09 June 2019      Accepted manuscript online: 
PACS:  42.81.Pa (Sensors, gyros)  
  42.81.Gs (Birefringence, polarization)  
  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant No. 2017YFC0110301), the National Natural Science Foundation of China (Grant Nos. 61575219, 91850209, and 11434016), the College Young Talents Program of Hebei Province, China (Grant No. BJ2018040), the Hebei University of Science and Technology Talent Introduction Project, China (Grant No. 1181324), and the Youth Innovation Promotion Association, Chinese Academy of Sciences (Grant No. 2018007).

Corresponding Authors:  Shao-Bo Fang     E-mail:  shaobo.fang@iphy.ac.cn

Cite this article: 

Zhen-Kai Fan(范振凯), Shao-Bo Fang(方少波), Shu-Guang Li(李曙光), Zhi-Yi Wei(魏志义) Refractive index sensor based on high-order surface plasmon resonance in gold nanofilm coated photonic crystal fiber 2019 Chin. Phys. B 28 094209

[1] Liu Q, Yan B and Liu J 2019 Appl. Phys. Express 12 052014
[2] Rifat A A, Haider F, Ahmed R, Mahdiraji G A, Mahamd Adikan F R and Miroshnichenko A E 2018 Opt. lett. 43 891
[3] Liu C, Su W, Liu Q, Lu X, Wang F, Sun T and Chu P K 2018 Opt. Express 26 9039
[4] Liu M, Yang X, Shum P and Yuan H 2018 Appl. Opt. 57 1883
[5] Liu C, Yang L, Liu Q, Wang F, Sun Z, Sun T, Mu H and Chu Paul K 2018 Plasmonics 13 779
[6] Yan X, Li B, Cheng T and Li S 2018 Sensors 18 2922
[7] Giorgini A, Avino S, Malara P, Zullo R, De Natale P, Mrkvová K, Homola J and Gagliardi G 2018 Sens. Actuators B-Chem. 273 336
[8] Dash J N and Jha R 2014 IEEE Photon. Technol. Lett. 26 1092
[9] Zhao Y, Deng Z and Wang Q 2014 Sens. Actuators B-Chem. 192 229
[10] Momota M R and Hasan M R 2018 Opt. Mater. 76 287
[11] Chen X, Xia L and Li C 2018 IEEE Photon. J. 10 1
[12] Lu J, Li Y, Han Y, et al. 2018 Appl. Opt. 57 5268
[13] Yang Z, Xia L, Li C, Chen X and Liu D 2019 Opt. Commun. 430 195
[14] Liu C, Su W, Wang F, Li X, Liu Q, Mu H, Sun T, Chu Paul K and Liu B 2018 IEEE Photon. Technol. Lett. 30 1471
[15] Luan N, Zhao L, Lian Y and Lou S 2018 IEEE Photon. J. 10 1
[16] Chu S, Nakkeeran K, Abobaker A M, Aphale S S, Babu P R and Senthilnathan K 2018 IEEE J. Sel. Top. Quant. 25 1
[17] Xia Y, Zhang Y, Pan S, Shum P, Yan M, Leviatan Y and Li C 2010 J. Opt. 12 015005
[18] Qian Y, Zhao Y, Wu Q and Yang Y 2018 Sens. Actuators B-Chem. 260 86
[19] Shuai B, Xia L and Liu D 2012 Opt. Express 20 25858
[20] Cao S, Shao Y, Wang Y, Wu T, Zhang L, Huang Y, Zhang F, Liao C, He J and Wang Y 2018 Opt. Express 26 3988
[21] Rifat A A, Mahdiraji G A, Sua Y M, Ahmed R, Shee Y G and Mahamd A F R 2015 Opt. Express 24 2485
[22] Yang Q, Qin L, Cao G, Zhang C and Li X 2018 Opt. Lett. 43 639
[1] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[2] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[3] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[4] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[5] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[6] Transition-edge sensors using Mo/Au/Au tri-layer films
Hubing Wang(王沪兵), Yue Lv(吕越), Dongxue Li(李冬雪), Yue Zhao(赵越), Bo Gao(高波), and Zhen Wang(王镇). Chin. Phys. B, 2023, 32(2): 028501.
[7] Design of a coated thinly clad chalcogenide long-period fiber grating refractive index sensor based on dual-peak resonance near the phase matching turning point
Qianyu Qi(齐倩玉), Yaowei Li(李耀威), Ting Liu(刘婷), Peiqing Zhang(张培晴),Shixun Dai(戴世勋), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2023, 32(1): 014204.
[8] Optoelectronic oscillator-based interrogation system for Michelson interferometric sensors
Ling Liu(刘玲), Xiaoyan Wu(吴小龑), Guodong Liu(刘国栋), Tigang Ning(宁提纲),Jian Xu(许建), and Haidong You(油海东). Chin. Phys. B, 2022, 31(9): 090702.
[9] An all-optical phase detector by amplitude modulation of the local field in a Rydberg atom-based mixer
Xiu-Bin Liu(刘修彬), Feng-Dong Jia(贾凤东), Huai-Yu Zhang(张怀宇), Jiong Mei(梅炅), Wei-Chen Liang(梁玮宸), Fei Zhou(周飞), Yong-Hong Yu(俞永宏), Ya Liu(刘娅), Jian Zhang(张剑), Feng Xie(谢锋), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2022, 31(9): 090703.
[10] High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples
Pibin Bing(邴丕彬), Guifang Wu(武桂芳), Qing Liu(刘庆), Zhongyang Li(李忠洋),Lian Tan(谭联), Hongtao Zhang(张红涛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(8): 084208.
[11] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[12] Design of a polarization splitter for an ultra-broadband dual-core photonic crystal fiber
Yongtao Li(李永涛), Jiesong Deng(邓洁松), Zhen Yang(阳圳), Hui Zou(邹辉), and Yuzhou Ma(马玉周). Chin. Phys. B, 2022, 31(5): 054215.
[13] MOS-based model of four-transistor CMOS image sensor pixels for photoelectric simulation
Bing Zhang(张冰), Congzhen Hu(胡从振), Youze Xin(辛有泽), Yaoxin Li(李垚鑫), Zhuoqi Guo(郭卓奇), Zhongming Xue(薛仲明), Li Dong(董力), Shanzhe Yu(于善哲), Xiaofei Wang(王晓飞), Shuyu Lei(雷述宇), and Li Geng(耿莉). Chin. Phys. B, 2022, 31(5): 058503.
[14] Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
Ying Huang(黄颖), Hua Yang(杨华), and Yucheng Mao(毛雨澄). Chin. Phys. B, 2022, 31(5): 054211.
[15] High-sensitivity Bloch surface wave sensor with Fano resonance in grating-coupled multilayer structures
Daohan Ge(葛道晗), Yujie Zhou(周宇杰), Mengcheng Lv(吕梦成), Jiakang Shi(石家康), Abubakar A. Babangida, Liqiang Zhang(张立强), and Shining Zhu(祝世宁). Chin. Phys. B, 2022, 31(4): 044102.
No Suggested Reading articles found!