Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(4): 044210    DOI: 10.1088/1674-1056/abdb1c
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Analysis of relative wavelength response characterization and its effects on scanned-WMS gas sensing

Dao Zheng(郑道), Zhi-Min Peng(彭志敏), Yan-Jun Ding(丁艳军), and Yan-Jun Du(杜艳君)
1 State Key Laboratory of Power Systems, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
Abstract  Our recently proposed three-step method showed the promising potential to improve the accuracy of relative wavelength response (RWR) characterization in the wavelength-modulation spectroscopy (WMS) over the commonly used summation method. A detailed comparison of the three-step method and the summation method, for the wavelength-scanned WMS gas-sensing, was performed with different laser parameters (modulation indexes and scan indexes) and gas properties (pressures and concentrations). Simulation results show that the accuracy of the predicted gas parameters is strongly limited by the RWR characterization with large modulation index and high gas pressure conditions. Both fitting residuals of RWR and errors of predicted gas parameters from the recently proposed three-step method are nearly 2 orders of magnitude smaller than those from the summation method. In addition, the three-step method is further improved by introducing a coupling term for the 2 nd harmonic amplitude. Experiments with CO2 absorption transition at 6976.2026 cm -1 were conducted and validated the simulation analysis. The modified-three-step method presents an improved accuracy in RWR description with at least 5% smaller fitting residual for all conditions compared with the three-step method, although the deviation of the deduced CO2 concentrations between these two methods does not exceed 0.2%.
Keywords:  tunable diode laser absorption spectroscopy      relative wavelength response characterization      scanned-wavelength-modulation spectroscopy (WMS)  
Received:  17 December 2020      Revised:  10 January 2021      Accepted manuscript online:  13 January 2021
PACS:  42.55.Px (Semiconductor lasers; laser diodes)  
  42.62.-b (Laser applications)  
  42.62.Fi (Laser spectroscopy)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51906120 and 11972213), China Postdoctoral Science Foundation (Grant Nos. 2018M640125 and 2019T120088), and the National Basic Research Program of China (Grant No. 2016YFC0201104).
Corresponding Authors:  Corresponding author. E-mail: duyanjun13@gmail.com   

Cite this article: 

Dao Zheng(郑道), Zhi-Min Peng(彭志敏), Yan-Jun Ding(丁艳军), and Yan-Jun Du(杜艳君) Analysis of relative wavelength response characterization and its effects on scanned-WMS gas sensing 2021 Chin. Phys. B 30 044210

1 Hanson R K2015 CLEO: 2015 STh4O.1
2 Shao J Xiang J D, Axner O and Ying C F 2016 Appl. Opt. 55 2339
3 Zhang Z Pang T, Yang Y, Xia H, Cui X, Sun P, Wu B, Wang Y, Sigrist M W and Dong F 2016 Opt. Express 24 A943
4 Li J D Peng Z M and Ding Y J 2020 Optics and Lasers in Engineering 126 105875
5 Pogàny A Klein A and Ebert V 2015 J. Quant. Spectrosc. Radiat. Transfer 165 108
6 Girard J J Choudhary R and Hanson R K 2018 J. Quant. Spectrosc. Radiat. Transfer 221 194
7 Du Y J Peng Z M and Ding Y J 2018 Opt. Express 26 9263
8 Campbell M F Wang S K, Goldenstein C S, Spearrin R M, Tulgestke A M, Zaczek L T, Davidson D F and Hanson R K 2015 Proceedings of the Combustion Institute 35 231
9 Laich A R Ninnemann E, Sneha N, Ramees R, Samuel B, Pitz W J, Goldsborough S S and Vasu S S 2020 Combust. Flame 212 486
10 Johnson S E Davidson D F and Hanson R K 2020 Combust. Flame 216 161
11 He D, Peng Z M and Ding Y J 2019 Combust. Flame 207 222
12 Amato F D and Rosa M D 2002 Optics and Lasers in Engineering 37 533
13 Li H J, Farooq A, Jeffries J B and and Hanson R K 2008 J. Quant. Spectrosc. Radiat. Transfer 109 132
14 Goldenstein C S and Hanson R K 2015 J. Quant. Spectrosc. Radiat. Transfer 152 127
15 Peng Z M, Du Y J and and Ding Y J 2020 Sensors (Basel) 20 681
16 Peng Z, Du Y and Ding Y 2020 Sensors (Basel) 20 616
17 Cui R Y, Dong L, Wu H P, Li S Z, Zhang L, Ma W G, Yin W B, Xiao L T, Jia S T and Tittel F K 2018 Opt. Express 26 24318
18 Tommasi E D, Casa G and Gianfrani L 2006 Appl. Phys. B 85 257
19 Li H J, Rieker G B, Liu X, Jeffries J B and Hanson R K 2006 Appl. Opt. 45 1052
20 Sun K, Chao X, Sur R, Jeffries J B and Hanson R K 2012 Appl. Phys. B 110 497
21 Wei W, Peng W Y, Wang Y, Choudhary R, Wang S K, Shao J K and Hanson R K 2018 Appl. Phys. B 125 9
22 Kluczynski P, Jahjah M, N?hle L, Axner O, Belahsene S, Fischer M, Koeth J, Rouillard Y, Westberg J, Vicet A and Lundqvist S 2011 Appl. Phys. B 105 427
23 Qu Z C Ghorbani, R, Valiev D and Schmidt F M 2015 Opt. Express 23 16492
24 Chen J, Hangauer A, Strzoda R and Amann M C 2010 Appl. Phys. B 102 381
25 Liu J X, Zhou, Y T, Guo S J, Hou J J, Zhao G, Ma W G, Dong L Wu Y Q, Zhang L, Yin W B, Xiao L T, Axner O and Jia S T 2019 Opt. Express 27 1249
26 Zhao G Tan W, Hou J J, Qiu X D, Ma W G, Li Z X, Dong L, Zhang L, Yin W B, Xiao L T, Axner O and Jia S T 2016 Opt. Express 24 1723
27 Sur Ritobrata, Peng W Y, Strand Christopher, Spearrin M R, Jeffries J B, Hanson R K, Bekal Anish, Halder Purbasha, Poonacha S P, Vartak Sameer and Sridharan Arun K 2017 J. Quant. Spectrosc. Radiat. Transfer 187 364
28 Sun K, Chao X, Sur R, Goldenstein C S, Jeffries J B and Hanson R K 2013 Meas. Sci. Technol. 24 125203
29 Goldenstein C S Strand C L, Schultz I A, Sun K, Jeffries J B and Hanson R K 2014 Appl. Opt. 53 356
30 Du Y J Peng M Z and Ding Y J 2020 Opt. Express 28 3482
31 Kluczynski P and Axner O 1999 Appl. Opt. 38 5803
32 Gamache R R and Lamouroux J L 2013 J. Quant. Spectrosc. Radiat. Transfer 130 158
33 Peng W Y, Strand C L and Hanson R K 2019 Appl. Phys. B 126 17
34 Rieker G B, Jeffries J B and Hanson R K 2009 48 5546
[1] In situ measurement on nonuniform velocity distributionin external detonation exhaust flow by analysis ofspectrum features using TDLAS
Xiao-Long Huang(黄孝龙), Ning Li(李宁), Chun-Sheng Weng(翁春生), and Yang Kang(康杨). Chin. Phys. B, 2022, 31(1): 014703.
[2] Laser absorption spectroscopy for high temperature H2O time-history measurement at 2.55 μm during oxidation of hydrogen
Yu-Dan Gou(苟于单), De-Xiang Zhang(张德翔), Yi-Jun Wang(王易君), Chang-Hua Zhang(张昌华), Ping Li(李萍), Xiang-Yuan Li(李象远). Chin. Phys. B, 2018, 27(7): 074213.
[3] Measurements of argon metastable density using the tunable diode laser absorption spectroscopy in Ar and Ar/O2
Dao-Man Han(韩道满), Yong-Xin Liu(刘永新), Fei Gao(高飞), Wen-Yao Liu(刘文耀), Jun Xu(徐军), You-Nian Wang(王友年). Chin. Phys. B, 2018, 27(6): 065202.
[4] Dynamic thermal modeling and parameter identification for monolithic laser diode module
Li Jin-Yi (李金义), Du Zhen-Hui (杜振辉), Ma Yi-Wen (马艺闻), Xu Ke-Xin (徐可欣). Chin. Phys. B, 2013, 22(3): 034203.
[5] Calibration-free wavelength modulation spectroscopy for gas concentration measurements under low-absorbance conditions
Che Lu (车璐), Ding Yan-Jun (丁艳军), Peng Zhi-Min (彭志敏), Li Xiao-Hang (李晓航). Chin. Phys. B, 2012, 21(12): 127803.
[6] Application of $\alpha$-$\beta$-$\gamma$ filtering to real-time atmosphere methane concentration measurement
Kan Rui-Feng (阚瑞峰), Liu Wen-Qing (刘文清), Zhang Yu-Jun (张玉钧), Liu Jian-Guo (刘建国), Chen Dong (陈东), Wang Min (王敏). Chin. Phys. B, 2006, 15(6): 1379-1383.
[7] Influence of laser intensity in second-harmonic detection with tunable diode laser multi-pass absorption spectroscopy
Kan Rui-Feng (阚瑞峰), Dong Feng-Zhong (董凤忠), Zhang Yu-Jun (张玉钧), Liu Jian-Guo (刘建国), Liu Cheng (刘诚), Wang Min (王敏), Gao Shan-Hu (高山虎), Chen Jun (陈军). Chin. Phys. B, 2005, 14(9): 1904-1909.
No Suggested Reading articles found!