ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Design of diamond-shape photonic crystal fiber polarization filter based on surface plasma resonance effect |
Yongxia Zhang(张永霞)1, Jinhui Yuan(苑金辉)1,2, Yuwei Qu(屈玉玮)2, Xian Zhou(周娴)1, Binbin Yan(颜玢玢)2, Qiang Wu(吴强)3, Kuiru Wang(王葵如)2, Xinzhu Sang(桑新柱)2, Keping Long(隆克平)1, Chongxiu Yu(余重秀)2 |
1 Research Center for Convergence Networks and Ubiquitous Services, University of Science and Technology Beijing(USTB), Beijing 100083, China; 2 State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China; 3 Department of Physics and Electrical Engineering, Northumbria University, Newcastle upon Tyne, NE1 8ST, United Kingdom |
|
|
Abstract A novel plasmonic polarization filter based on the diamond-shape photonic crystal fiber (PCF) is proposed. The resonant coupling characteristics of the PCF polarization filter are investigated by the full-vector finite-element method. By optimizing the geometric parameters of the PCF, when the fiber length is 5 mm, the polarization filter has a bandwidth of 990 nm and an extinction ratio (ER) of lower than -20 dB. Moreover, a single wavelength polarization filter can also be achieved, along with an ER of -279.78 dB at wavelength 1.55 μm. It is believed that the proposed PCF polarization filter will be very useful in laser and optical communication systems.
|
Received: 09 October 2019
Revised: 13 November 2019
Accepted manuscript online:
|
PACS:
|
42.79.Ci
|
(Filters, zone plates, and polarizers)
|
|
42.79.Gn
|
(Optical waveguides and couplers)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61875238 and 61935007). |
Corresponding Authors:
Jinhui Yuan
E-mail: yuanjinhui81@bupt.edu.cn
|
Cite this article:
Yongxia Zhang(张永霞), Jinhui Yuan(苑金辉), Yuwei Qu(屈玉玮), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), Xinzhu Sang(桑新柱), Keping Long(隆克平), Chongxiu Yu(余重秀) Design of diamond-shape photonic crystal fiber polarization filter based on surface plasma resonance effect 2020 Chin. Phys. B 29 034208
|
[1] |
Kim S and Kee C 2009 Opt. Express 17 15885
|
[2] |
Aliramezani M and Nejad S 2010 Opt. Laser Technol. 42 1209
|
[3] |
Fujisawa T, Saitoh K, Wada K and Koshiba M 2006 Opt. Express 14 893
|
[4] |
Reeves W, Knight J, Russell P and Roberts P 2002 Opt. Express 10 609
|
[5] |
Broderick N, Monro T, Bennett P and Richardson D 1999 Opt. Lett. 24 1395
|
[6] |
Yang T Y, Wang E L, Jiang H M, Hu Z J and Xie K 2015 Opt. Express 23 8329
|
[7] |
Ademgil H and Haxha S 2008 J. Lightwave Technol. 26 441
|
[8] |
Abdelaziz I, AbdelMalek F, Haxha S, Ademgil H and Bouchriha H 2013 J. Lightwave Technol. 31 343
|
[9] |
Lu S, Li W, Guo H and Lu M 2011 Appl. Opt. 50 5798
|
[10] |
Otto 1968 Z. Phys. A 216 398
|
[11] |
Jiang L H, Zheng Y, Yang J J, Hou L T, Li Z H and Zhao X T 2017 Plasmon 12 411
|
[12] |
Chen H L, Li S G, Ma M J, Liu Y C, Shi M, Liu Q and Cheng T L 2016 J. Light. Technol. 34 4972
|
[13] |
Wang Y, Huang Q, Zhu W J, Yang M H and Lewis E 2018 Opt. Express 26 1910
|
[14] |
Wu T S, Shao Y, Wang Y, Cao S Q, Cao W P, Zhang F, Liao C R, He J, Huang Y J, Hou M X and Wang Y P 2017 Opt. Express 25 20313
|
[15] |
Zhou X, Li S G, Cheng T L and An G W 2018 Opt. Quantum Electron. 50 157
|
[16] |
Liu C, Wang L Y, Yang L, Wang F M, Xu C H, Lv J W, Fu G F, Li X L and Liu Q 2019 Phys. Lett. A 383 3200
|
[17] |
Fan Z K, Fang S B, Li S G and Wei Z Y 2019 Chin. Phys. B 28 094209
|
[18] |
Wang D D, Mu C L, Kong D P and Guo C Y 2019 Chin. Phys. B 28 118701
|
[19] |
Zhang X, Wang R, Cox F, Kuhlmey B and Large M 2007 Opt. Express 15 16270
|
[20] |
Lee H W, Schmidt M A, Tyagi H, Sempere and Prill L 2008 Appl. Phys. Lett. 93 111102
|
[21] |
Guo Y, Li J S, Li S G, Zhang S H and Liu Y D 2018 Appl. Opt. 57 8016
|
[22] |
Chang M, Li B X, Chen N, Lu X L, Zhang X D and Xu J 2019 IEEE Photon. J. 11 7202312
|
[23] |
Wang J S, Pei L, Wng S J, Wu L Y, Li J and Ning T G 2018 Appl. Opt. 57 3847
|
[24] |
Zhang Z J, Tsuji Y and Eguchi M 2014 J. Lightwave Technol. 32 4558
|
[25] |
Xue J R, Li S G, Xiao Y Z, Qin W, Xin X J and Zhu X P 2013 Opt. Express 21 13733
|
[26] |
Liu Q, Li S G, Li H, Zi J C, Zhang W, Fan Z K, An G W and Bao Y J 2015 Plasmon. 10 931
|
[27] |
Li B Y, Li M Q, Peng L, Zhou G Y, Hou Z Y and Xia C M 2017 IEEE Photon. J. 9 5700209
|
[28] |
Wang X Y, Li S G, Liu Q and Fan Z K 2018 Optik 156 463
|
[29] |
Heikal A, Hussain F, Hameed M and Obayya S 2015 J. Lightwave Technol. 33 2868
|
[30] |
Islam M, Sultana J, Rifat A, Dinoviser A, Ng B, Ebendorff-Heideprien H and Abbott D 2018 Opt. Express 26 30347
|
[31] |
Liu Q, Li S G and Chen H L 2019 IEEE Photon. J. 7 2700210
|
[32] |
Qu Y W, Yuan J H, Zhou X, Li F, Mei C, Yan B B, Wu Q, Wang K R Sang X Z, Long K P and Yu C X 2019 Opt. Commun. 452 1
|
[33] |
Feng X, Du H, Li S G, Zhang Y N, Liu Q and Guo X Y 2017 Opt. Quant. Electron. 49 235
|
[34] |
Zi J C, Li S G, An G W and Fan Z K 2016 Opt. Commun. 363 80
|
[35] |
Xu Z L, Li X Y, Ling W W, Liu P and Zhang Z Y 2015 Opt. Commun. 354 314
|
[36] |
An G W, Li S G, Zhang W, Fan Z K and Bao Y J 2014 Opt. Commun. 331 316
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|