CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
High-performing silicon-based germanium Schottky photodetector with ITO transparent electrode |
Zhiwei Huang(黄志伟)1, Shaoying Ke(柯少颖)1, Jinrong Zhou(周锦荣) 1, Yimo Zhao(赵一默) 2, Wei Huang(黄巍) 2, Songyan Chen(陈松岩) 2, and Cheng Li(李成)2,† |
1 College of Physics and Information Engineering, Minnan Normal University, Zhangzhou 363000, China; 2 College of Physics Science and Technology, Xiamen University, Xiamen 361005, China |
|
|
Abstract A near-infrared germanium (Ge) Schottky photodetector (PD) with an ultrathin silicon (Si) barrier enhancement layer between the indium-doped tin oxide (ITO) electrode and Ge epilayer on Si or silicon-on-insulator (SOI) is proposed and fabricated. The well-behaved ITO/Si cap/Ge Schottky junctions without intentional doping process for the Ge epilayer are formed on the Si and SOI substrates. The Si-and SOI-based ITO/Si cap/Ge Schottky PDs exhibit low dark current densities of 33 mA/cm2 and 44 mA/cm2, respectively. Benefited from the high transmissivity of ITO electrode and the reflectivity of SOI substrate, an optical responsivity of 0.19 A/W at 1550 nm wavelength is obtained for the SOI-based ITO/Si cap/Ge Schottky PD. These complementary metal-oxide-semiconductor (CMOS) compatible Si (or SOI)-based ITO/Si cap/Ge Schottky PDs are quite useful for detecting near-infrared wavelengths with high efficiency.
|
Received: 10 October 2020
Revised: 28 November 2020
Accepted manuscript online: 17 December 2020
|
PACS:
|
73.30.+y
|
(Surface double layers, Schottky barriers, and work functions)
|
|
81.05.Cy
|
(Elemental semiconductors)
|
|
85.30.-z
|
(Semiconductor devices)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFB2200103), the National Natural Science Foundation of China (Grant No. 61474094), and Principal Fund of Minnan Normal University (Grant No. KJ2020006). |
Corresponding Authors:
†Corresponding author. E-mail: lich@xmu.edu.cn
|
Cite this article:
Zhiwei Huang(黄志伟), Shaoying Ke(柯少颖), Jinrong Zhou(周锦荣), Yimo Zhao(赵一默), Wei Huang(黄巍), Songyan Chen(陈松岩), and Cheng Li(李成) High-performing silicon-based germanium Schottky photodetector with ITO transparent electrode 2021 Chin. Phys. B 30 037303
|
1 David A and Fellow I 2009 Proc. IEEE 97 1166 2 Taubenblatt M A 2012 J. Lightwave Technol. 30 448 3 Zang H J, Kim G S, Park G J, Choi Y S and Yu H Y 2016 Opt. Lett. 41 3686 4 Lin Y, Lee K H, Bao S, Guo X, Wang H, Michel J and Tan C S 2017 Photonics Res. 5 702 5 Li C, Xue C, Li Y, Li C, Cheng B and Wang Q 2015 Chin. Phys. B 24 038502 6 Chen G, Yu Y, Deng S, Liu L and Zhang X 2015 Opt. Express 23 25700 7 Dushaq G, Nayfeh A and Rasras M 2017 Opt. Express 25 32110 8 Otuonye U, Kim H W and Lu W D 2017 Appl. Phys. Lett. 110 173104 9 Vivien L, Polzer A, Marris-Morini D, Osmond J, Hartmann J M, Crozat p, Cassan E, Kopp C, Zimmermann H and F\'ed\'eli J M 2012 Opt. Express 20 1096 10 Sandeep K, Avijit C, Kumar S and Sushobhan A 2020 IEEE Sens. J. 20 4660 11 Li B and Shao J 2012 Acta Phys. Sin 61 077301 (in Chinese) 12 Sang L, Qin Z, Cen L, Shen B, Zhang G, LI S, Chen H, Liu D, Kang J, Cheng C, Zhao H, Lu Z, Ding J, Zhao L, Si J and Sun W 2008 Chin. Phys. Lett. 25 258 13 Kang Y, Li X, Fang J, He Z and Tang Y 2006 Chin. Phys. B 15 1325 14 Huang Y, Yeh P, Huang Y, Chen Y, Huang C, Lin C and Yeh W 2015 IEEE Photonics Technol. Lett. 28 605 15 Lee H Y, Su C T, Wu B K, Xu W L, Lin Y J and Chern M Y 2011 Jpn. J. Appl. Phys. 50 088004 16 Kim H, Hong S H, Yun C P, Lee J, Jeon C H and Kim J 2014 Mater. Lett. 115 45 17 Kim H S, Kumar M D, Patel M and Kim J 2016 Sens. & Act. A Phys. 252 35 18 Huang Z, Mao Y, Lin G, Yi X, Chang A, Li C, Chen S, Huang W and Wang J 2018 Opt. Express 26 5827 19 Yun J H, Kumar M D, Patel M, Park Y C, Kim B S and Kim J 2016 Mater. Sci. Semicond. Process 48 95 20 Huang Z, Yu C, Chang A, Zhao Y, Huang W, Chen S and Li C 2020 J. Mater. Sci. 55 8630 21 Huang Z, Mao Y, Lin G, Wang Y, Li C, Chen S, Huang W and Xu J 2017 Mater. Sci. Eng. B 224 103 22 Takenaka M, Morii K, Sugiyama M, Nakano Y and Takagi S 2012 Opt. Express 20 8718 23 Hyun-Yong Y, Shen R, Shik J, Okyay A K, Miller D A and Saraswat K C 2009 IEEE Electron. Device Lett. 30 1161 24 Huang Z, Mao Y, Chang A, Hong H, Li C, Chen S, Huang W and Wang J 2018 Appl. Phys. Express 11 102203 25 Li C, Xue C, Liu Z, Cheng B, Li C and Wang Q 2013 IEEE Trans. Electron Devices 60 1183 26 Giovane L M, Luan H C, Agarwal A M and Kimerling L C 2001 Appl. Phys. Lett. 78 541 27 Colace L, Assanto G, Fulgoni D and Nash L 2008 J. Lightwave. Technol. 26 2954 28 Sze S M and Ng K K2008 Physics of semiconductor devices, 3rd edn. (Xi'an: Xian Jiaotong University Press) pp. 501-502 (in Chinese) 29 Ishikawa Y and Wada K 2010 Thin Solid Films 518 S83 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|