Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(8): 087102    DOI: 10.1088/1674-1056/27/8/087102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Investigations on mesa width design for 4H-SiC trench super junction Schottky diodes

Xue-Qian Zhong(仲雪倩)2, Jue Wang(王珏)1, Bao-Zhu Wang(王宝柱)2, Heng-Yu Wang(王珩宇)2, Qing Guo(郭清)2, Kuang Sheng(盛况)2
1 College of Information and Electrical Engineering, Zhejiang University City College, Hangzhou 310015, China;
2 College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
Abstract  Mesa width (WM) is a key design parameter for SiC super junction (SJ) Schottky diodes (SBD) fabricated by the trench-etching-and-sidewall-implant method. This paper carries out a comprehensive investigation on how the mesa width design determines the device electrical performances and how it affects the degree of performance degradation induced by process variations. It is found that structures designed with narrower mesa widths can tolerant substantially larger charge imbalance for a given BV target, but have poor specific on-resistances. On the contrary, structures with wider mesa widths have superior on-state performances but their breakdown voltages are more sensitive to p-type doping variation. Medium WM structures (~2 μ) exhibit stronger robustness against the process variation resulting from SiC deep trench etching. Devices with 2-μ mesa width were fabricated and electrically characterized. The fabricated SiC SJ SBDs have achieved a breakdown voltage of 1350 V with a specific on-resistance as low as 0.98 mΩ·cm2. The estimated specific drift on-resistance by subtracting substrate resistance is well below the theoretical one-dimensional unipolar limit of SiC material. The robustness of the voltage blocking capability against trench dimension variations has also been experimentally verified for the proposed SiC SJ SBD devices.
Keywords:  silicon carbide      super junction      Schottky diode      trench etching  
Received:  01 March 2018      Revised:  03 June 2018      Accepted manuscript online: 
PACS:  71.20.Nr (Semiconductor compounds)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
  73.30.+y (Surface double layers, Schottky barriers, and work functions)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFB0400502) and the National Natural Science Foundation of China (Grant Nos. U1766222 and 51777187).
Corresponding Authors:  Jue Wang     E-mail:  wangjue@zucc.edu.cn

Cite this article: 

Xue-Qian Zhong(仲雪倩), Jue Wang(王珏), Bao-Zhu Wang(王宝柱), Heng-Yu Wang(王珩宇), Qing Guo(郭清), Kuang Sheng(盛况) Investigations on mesa width design for 4H-SiC trench super junction Schottky diodes 2018 Chin. Phys. B 27 087102

[1] Bolotnikov A, Losee P, Permuy A, Dunne G, Kennerly S, Rowden B, Nasadoski J, Harfman M, Raju R, Tao F, Cioffi P and Mueller F J and Stevanovic 2015 Proc 2015 Ann. Appl. Power Electron. Conf. Exposit., March 15-19, 2015, p. 2445
[2] Wang X D, Deng X C, Wang Y W, Wang Y, Wen Y and Zhang B 2014 Chin. Phys. B 23 057203
[3] Chen S Z and Sheng K 2014 Chin. Phys. B 23 077201
[4] Song Q W, Tang X Y, Yuan H, Wang Y H, Zhang Y M, Guo H, Jia R X, Lv H L, Zhang Y M and Zhang Y M 2016 Chin. Phys. B 25 047102
[5] Cooper J A, Tamaki T, Walden G, Sui Y, Wang S R and Wang X 2009 Proc. IEEE IEDM, December 7-9, 2009, p. 1
[6] Yu L C and Sheng K 2006 Solid-Stat. Electron 50 1062
[7] Yu L C and Sheng K 2008 IEEE Trans. Electron Dev. 55 1961
[8] Nishio J, Ota C, Hataketama T, Shinohe T, Kojima K, Nishizawa S and Ohashi H 2008 IEEE Trans. Electron Dev. 55 1954
[9] Kosugi R, Sakuma Y, Kojima K, Itoh S, Nagata A, Tatsuo T, Tanaka Y and Okumura H 2014 Proc. 26th Int. Symp. Power Semicond. Devices ICs, June 15-19, 2014, p. 346
[10] Zhong X Q, Wang B Z and Sheng K 2016 Proc. 28th Int. Symp. Power Semicond. Devices ICs, June 12-16, 2016, p. 231
[11] Masuda T, Kosugi R and Hiyoshi T 2017 Mater. Sci. Forum 897 483
[12] Saito W, Omura I, Aida S, Koduki S, Izumisawa M, Yoshioka H, Okumura H, Yamaguchi M and Ogura T 2006 Proc. 18th Int. Symp. Power Semicond. Devices ICs, June 4-8, 2006, p. 18
[13] Sakakibara J, Noda Y, Shibata T, Nogami S, Yamaoka T and Yamaguchi H 2008 Proc. 20th Int. Symp. Power Semicond. Devices ICs, May, 18-22, 2008, p. 299
[1] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[2] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
[3] Improvement on short-circuit ability of SiC super-junction MOSFET with partially widened pillar structure
Xinxin Zuo(左欣欣), Jiang Lu(陆江), Xiaoli Tian(田晓丽), Yun Bai(白云), Guodong Cheng(成国栋), Hong Chen(陈宏), Yidan Tang(汤益丹), Chengyue Yang(杨成樾), and Xinyu Liu(刘新宇). Chin. Phys. B, 2022, 31(9): 098502.
[4] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[5] Assessing the effect of hydrogen on the electronic properties of 4H-SiC
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(5): 056108.
[6] Construction and mechanism analysis on nanoscale thermal cloak by in-situ annealing silicon carbide film
Jian Zhang(张健), Hao-Chun Zhang(张昊春), Zi-Liang Huang(黄子亮), Wen-Bo Sun(孙文博), and Yi-Yi Li(李依依). Chin. Phys. B, 2022, 31(1): 014402.
[7] Effects of substitution of group-V atoms for carbon or silicon atoms on optical properties of silicon carbide nanotubes
Ying-Ying Yang(杨莹莹), Pei Gong(龚裴), Wan-Duo Ma(马婉铎), Rui Hao(郝锐), and Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2021, 30(6): 067803.
[8] Improved 4H-SiC UMOSFET with super-junction shield region
Pei Shen(沈培), Ying Wang(王颖), Xing-Ji Li(李兴冀), Jian-Qun Yang(杨剑群), Cheng-Hao Yu(于成浩), and Fei Cao(曹菲). Chin. Phys. B, 2021, 30(5): 058502.
[9] Conductance and dielectric properties of hydrogen and hydroxyl passivated SiCNWs
Wan-Duo Ma(马婉铎), Ya-Lin Li(李亚林), Pei Gong(龚裴), Ya-Hui Jia(贾亚辉), and Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2021, 30(10): 107801.
[10] Design and fabrication of 10-kV silicon-carbide p-channel IGBTs with hexagonal cells and step space modulated junction termination extension
Zheng-Xin Wen(温正欣), Feng Zhang(张峰), Zhan-Wei Shen(申占伟), Jun Chen(陈俊), Ya-Wei He(何亚伟), Guo-Guo Yan(闫果果), Xing-Fang Liu(刘兴昉), Wan-Shun Zhao(赵万顺), Lei Wang(王雷), Guo-Sheng Sun(孙国胜), Yi-Ping Zeng(曾一平). Chin. Phys. B, 2019, 28(6): 068504.
[11] High performance lateral Schottky diodes based on quasi-degenerated Ga2O3
Yang Xu(徐阳), Xuanhu Chen(陈选虎), Liang Cheng(程亮), Fang-Fang Ren(任芳芳), Jianjun Zhou(周建军), Song Bai(柏松), Hai Lu(陆海), Shulin Gu(顾书林), Rong Zhang(张荣), Youdou Zheng(郑有炓), Jiandong Ye(叶建东). Chin. Phys. B, 2019, 28(3): 038503.
[12] Influence of deep defects on electrical properties of Ni/4H-SiC Schottky diode
Jin-Lan Li(李金岚), Yun Li(李赟), Ling Wang(汪玲), Yue Xu(徐跃), Feng Yan(闫锋), Ping Han(韩平), Xiao-Li Ji(纪小丽). Chin. Phys. B, 2019, 28(2): 027303.
[13] Effect of Au/Ni/4H-SiC Schottky junction thermal stability on performance of alpha particle detection
Xin Ye(叶鑫), Xiao-Chuan Xia(夏晓川), Hong-Wei Liang(梁红伟), Zhuo Li(李卓), He-Qiu Zhang(张贺秋), Guo-Tong Du(杜国同), Xing-Zhu Cui(崔兴柱), Xiao-Hua Liang(梁晓华). Chin. Phys. B, 2018, 27(8): 087304.
[14] Shortening turn-on delay of SiC light triggered thyristor by 7-shaped thin n-base doping profile
Xi Wang(王曦), Hong-Bin Pu(蒲红斌), Qing Liu(刘青), Li-Qi An(安丽琪). Chin. Phys. B, 2018, 27(10): 108502.
[15] Broadband microwave frequency doubler based on left-handed nonlinear transmission lines
Jie Huang(黄杰), Wenwen Gu(顾雯雯), Qian Zhao(赵倩). Chin. Phys. B, 2017, 26(3): 037306.
No Suggested Reading articles found!