CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Influence of deep defects on electrical properties of Ni/4H-SiC Schottky diode |
Jin-Lan Li(李金岚)1, Yun Li(李赟)2, Ling Wang(汪玲)2, Yue Xu(徐跃)3, Feng Yan(闫锋)1, Ping Han(韩平)1, Xiao-Li Ji(纪小丽)1 |
1 College of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; 2 Science and Technology on Monolithic Integrated Circuits and Modules Laboratory, Electronic Devices Institute, Nanjing 210016, China; 3 College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China |
|
|
Abstract In this paper, we investigate the influence of deep level defects on the electrical properties of Ni/4H-SiC Schottky diodes by analyzing device current-voltage (I-V) characteristics and deep-level transient spectra (DLTS). Two Schottky barrier heights (SBHs) with different temperature dependences are found in Ni/4H-SiC Schottky diode above room temperature. DLTS measurements further reveal that two kinds of defects Z1/2 and Ti(c)a are located near the interface between Ni and SiC with the energy levels of EC-0.67 eV and EC-0.16 eV respectively. The latter one as the ionized titanium acceptor residing at cubic Si lattice site is thought to be responsible for the low SBH in the localized region of the diode, and therefore inducing the high reverse leakage current of the diode. The experimental results indicate that the Ti(c)rm a defect has a strong influence on the electrical and thermal properties of the 4H-SiC Schottky diode.
|
Received: 28 August 2018
Revised: 27 November 2018
Accepted manuscript online:
|
PACS:
|
73.40.Sx
|
(Metal-semiconductor-metal structures)
|
|
61.72.J-
|
(Point defects and defect clusters)
|
|
71.55.-i
|
(Impurity and defect levels)
|
|
73.30.+y
|
(Surface double layers, Schottky barriers, and work functions)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFB0400402). |
Corresponding Authors:
Ping Han, Xiao-Li Ji
E-mail: hanping@nju.edu.cn;xji@nju.edu.cn
|
Cite this article:
Jin-Lan Li(李金岚), Yun Li(李赟), Ling Wang(汪玲), Yue Xu(徐跃), Feng Yan(闫锋), Ping Han(韩平), Xiao-Li Ji(纪小丽) Influence of deep defects on electrical properties of Ni/4H-SiC Schottky diode 2019 Chin. Phys. B 28 027303
|
[1] |
Bhatnagar M, McLarty P K and Baliga B J 1992 IEEE Electron Dev. Lett. 13 501
|
[2] |
Schoen K P, Woodall J M, Cooper J A and Melloch M R 1998 IEEE Trans. Electron. Dev. 45 1595
|
[3] |
Wahab Q, Kimoto T, Ellison A, Hallin C, Tuominen M, Yakimova R, Henry A, Bergman J P and Janzén E 1998 Appl. Phys. Lett. 72 445
|
[4] |
Tung R T 1992 Phys. Rev. B 45 13509
|
[5] |
Benamara M, Anani M, Akkal B, Akkal B and Benamaraet Z 2014 J. Alloys Compd. 603 197
|
[6] |
La Via F, Camarda M and La Magna A 2014 Appl. Phys. Rev. 1 031301
|
[7] |
Yamamoto1 Y, Harada1 S, Seki K, Horio A, Mitsuhashi T, Koike D, Tagawa M and Ujihara T 2014 Appl. Phys. Express 7 065501
|
[8] |
Katsuno T, Watanabe Y, Fujiwara H, Konishi M, Naruoka H, Morimoto J, Morino T and Endo T 2011 Appl. Phys. Lett. 98 222111
|
[9] |
Lee K Y and Huang Y H 2012 IEEE Trans. Electron. Dev. 59 694
|
[10] |
Wahab Q, Ellison A, Henry A, Janzén E, Hallin C, Di Persio J and Martinez R 2000 Appl. Phys. Lett. 76 2725
|
[11] |
Ewing D J, Porter L M, Wahab Q, Ma X, Sudharshan T S, Tumakha S, Gao M and Brillson L J 2007 J. Appl. Phys. 101 501
|
[12] |
Mandal K C, Chaudhuri S K, Nguyen K V and Mannan M A 2014 IEEE Trans. Nucl. Sci. 61 2338
|
[13] |
Rao P K, Park B, Lee S T, Noh Y K, Kim M D and Oh J 2011 J. Appl. Phys. 110 013716
|
[14] |
Muzykov P G, Krishna R M and Mandal K C 2012 J. Appl. Phys. 111 14910
|
[15] |
Skromme B J, Luckowski E, Moore K, Bhatnagar M, Weitzel C E, Gehoski T and Ganser D 2000 J. Electron. Mater. 29 376
|
[16] |
Calcagno L, Ruggiero A, Roccaforte F and Via F L 2005 J. Appl. Phys. 98 023713
|
[17] |
Tumakha S, Ewing D J, Porter L M, Wahab Q, Ma X, Sudharshan T S and Brillson L J 2005 Appl. Phys. Lett. 87 242106
|
[18] |
Pristavu G, Brezeanu G, Badila M, Pascu R, Danila M and Godignon P 2015 Appl. Phys. Lett. 106 261605
|
[19] |
Omar S U, Sudarshan T S, Rana T A, Song H and Chandrashekhar M V S 2014 J. Phys. D: Appl. Phys. 47 295102
|
[20] |
Werner J H and Guttler H H 1991 J. Appl. Phys. 69 1522
|
[21] |
Aydın M E, Yıldırım N and Türüt A 2007 J. Appl. Phys. 102 043701
|
[22] |
Kumar V, Maan A S and Akhtar J 2014 J. Vac. Sci. Technol. B 32 041203
|
[23] |
ÖzavcıE, Demirezen S, Aydemir U and Altındal Ş 2013 Sensor. Actuat. A-Phys. 194 259
|
[24] |
Khanna S, Neeleshwar S and Noor A 2011 J. Electron. Dev. 98 382
|
[25] |
Gammon P M, Pérez-Tomás A, Shah V A, Vavasour O, Donchev E, Pang J S, Myronov M, Fisher C A, Jennings M R, Leadley D R and Mawby P A 2013 J. Appl. Phys. 114 223704
|
[26] |
Benmaza H, Akkal B, Abid H, Bluetb J M, Anania M and Bensaad Z 2008 Microelectron. J. 39 80
|
[27] |
Defives D, Noblanc O, Dua C and Brylinski C 1999 IEEE Electron Dev. Lett. 46 449
|
[28] |
Kaya A, Sevgili Ö, Altïndal Ş and Öztürk M K 2015 Indian J. Pure Appl. Phys. 53 56
|
[29] |
Bhatnagar M, Baliga B J, Kirk H R and Rozgonyi G A 1996 IEEE Trans. Electron. Dev. 43 150
|
[30] |
Mannan M A, Chaudhuri S K, Nguyen K V and Mandal K C 2014 J. Appl. Phys. 115 102001
|
[31] |
Zhang J, Storasta L, Bergman J P, Son N T and Janzén E 2003 J. Appl. Phys. 93 4708
|
[32] |
Mannan M A, Nguyen K V and Pak R O 2016 IEEE Trans. Nucl. Sci. 63 1083
|
[33] |
Dalibor T, Pensl G and Nordell N 1997 Phys. Rev. B 55 13618
|
[34] |
Tumakha S, Ewing D J, Porter L M, Wahab Q, Ma X, Sudarshan T S and Brillson L J 2005 Appl. Phys. Lett. 87 242106
|
[35] |
Castaldinia A, Cavallinia A, Polentaa L, Navab F, Canalic C and Lanzierid C 2002 Appl. Surf. Sci. 187 248
|
[36] |
Zhang J, Storasta L, Bergman J P, Son N T and Janzén E 2003 J. Appl. Phys. 93 4708
|
[37] |
Dalibor T, Pensl G, Nordell N and Schöner A 1997 Phys. Rev. B 55 13618
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|