Special Issue:
SPECIAL TOPIC — Phononics and phonon engineering
|
SPECIAL TOPIC—Phononics and phonon engineering |
Prev
Next
|
|
|
First-principles analysis of phonon thermal transport properties of two-dimensional WS2/WSe2 heterostructures |
Zheng Chang(常征)1, Kunpeng Yuan(苑昆鹏)1, Zhehao Sun(孙哲浩)1, Xiaoliang Zhang(张晓亮)1,†, Yufei Gao(高宇飞)1,‡, Xiaojing Gong(弓晓晶)2,§, and Dawei Tang(唐大伟)1,§ |
1 Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China; 2 Institute of Materials Science and Engineering, National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou 213164, China |
|
|
Abstract The van der Waals (vdW) heterostructures of bilayer transition metal dichalcogenide obtained by vertically stacking have drawn increasing attention for their enormous potential applications in semiconductors and insulators. Here, by using the first-principles calculations and the phonon Boltzmann transport equation (BTE), we studied the phonon transport properties of WS2/WSe2 bilayer heterostructures (WS2/WSe2-BHs). The lattice thermal conductivity of the ideal WS2/WSe2-BHs crystals at room temperature (RT) was 62.98 W/mK, which was clearly lower than the average lattice thermal conductivity of WS2 and WSe2 single layers. Another interesting finding is that the optical branches below 4.73 THz and acoustic branches have powerful coupling, mainly dominating the lattice thermal conductivity. Further, we also noticed that the phonon mean free path (MFP) of the WS2/WSe2-BHs (233 nm) was remarkably attenuated by the free-standing monolayer WS2 (526 nm) and WSe2 (1720 nm), leading to a small significant size effect of the WS2/WSe2-BHs. Our results systematically demonstrate the low optical and acoustic phonon modes-dominated phonon thermal transport in heterostructures and give a few important guidelines for the synthesis of van der Waals heterostructures with excellent phonon transport properties.
|
Received: 03 August 2020
Revised: 07 December 2020
Accepted manuscript online: 11 December 2020
|
PACS:
|
44.10.+i
|
(Heat conduction)
|
|
63.22.-m
|
(Phonons or vibrational states in low-dimensional structures and nanoscale materials)
|
|
65.80.-g
|
(Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51720105007, 51806031, 11602149, and GZ1257) and the Fundamental Research Funds for the Central Universities, China (Grant Nos. DUT16RC(3)116 and DUT19RC(3)006). The computing resources from Supercomputer Center of Dalian University of Technology and ScGrid are greatly acknowledged. |
Corresponding Authors:
†Corresponding author. E-mail: zhangxiaoliang@dlut.edu.cn ‡Corresponding author. E-mail: gaoyufei@dlut.edu.cn §Corresponding author. E-mail: gongxiaojing2018@cczu.edu.cn ¶Corresponding author. E-mail: dwtang@dlut.edu.cn
|
Cite this article:
Zheng Chang(常征), Kunpeng Yuan(苑昆鹏), Zhehao Sun(孙哲浩), Xiaoliang Zhang(张晓亮), Yufei Gao(高宇飞), Xiaojing Gong(弓晓晶), and Dawei Tang(唐大伟) First-principles analysis of phonon thermal transport properties of two-dimensional WS2/WSe2 heterostructures 2021 Chin. Phys. B 30 034401
|
1 Jariwala D, Sangwan V K, Late D J, Johns J E, Dravid V P, Marks T J, Lauhon L J and Hersam M C 2013 Appl. Phys. Lett. 102 173107 2 Terrones H, L\'opez-Ur\'ías F and Terrones M 2013 Scientific Reports 3 1 3 Zhao W, Ribeiro R M, Toh M, Carvalho A, Kloc C, Castro Neto A and Eda G 2013 Nano Lett. 13 5627 4 Liu X and Zhang Y W 2018 Chin. Phys. B 27 034402 5 Mak K F, Shan J and Heinz T F 2011 Phys. Rev. Lett. 106 046401 6 Li H, Wu J, Yin Z and Zhang H 2014 Accounts of Chemical Research 47 1067 7 Tongay S, Fan W, Kang J, Park J, Koldemir U, Suh J, Narang D S, Liu K, Ji J and Li J 2014 Nano Lett. 14 3185 8 Kumar S and Schwingenschl\"ogl U 2015 Chemistry of Materials 27 1278 9 Gandi A N and Schwingenschl\"ogl U 2014 Chemistry of Materials 26 6628 10 Ma J J, Zheng J J, Zhu X L, Liu P F, Li W D and Wang B T 2019 Phys. Chem. Chem. Phys. 21 10442 11 Gao Y, Zhang X, Tang D and Hu M 2019 Carbon 143 189 12 Hicks L and Dresselhaus M S 1993 Phys. Rev. B 47 12727 13 Adessi C, Thebaud S, Bouzerar R and Bouzerar G 2017 J. Phys. Chem. C 121 12577 14 Lee C, Hong J, Lee W R, Kim D Y and Shim J H 2014 Journal of Solid State Chemistry 211 113 15 Wang K, Huang B, Tian M, Ceballos F, Lin M W, Mahjouri-Samani M, Boulesbaa A, Puretzky A A, Rouleau C M and Yoon M 2016 ACS Nano 10 6612 16 Jin C, Kim J, Utama M I B, Regan E C, Kleemann H, Cai H, Shen Y, Shinner M J, Sengupta A and Watanabe K 2018 Science 360 893 17 Li S, Zang W, Liu X, Pennycook S J, Kou Z, Yang C, Guan C and Wang J 2019 Chemical Engineering Journal 359 1419 18 Ceballos F, Bellus M Z, Chiu H Y and Zhao H 2014 ACS Nano 8 12717 19 Debbichi L, Eriksson O and Leb`egue S 2014 Phys. Rev. B 89 205311 20 Wang F Q, Liu J, Li X, Wang Q and Kawazoe Y 2017 Appl. Phys. Lett. 111 192102 21 Gao Y, Zhou Y and Hu M 2018 J. Mater. Chem. A 6 18533 22 Gao Y, Zhou Y, Zhang X and Hu M 2018 J. Mater. Chem. C 122 9220 23 Gao Y, Zhang X, Zhou Y and Hu M 2017 J. Mater. Chem. C 5 10578 24 Terrones H and Terrones M 2014 Journal of Materials Research 29 373 25 Duan X, Wang C, Shaw J C, Cheng R, Chen Y, Li H, Wu X, Tang Y, Zhang Q and Pan A 2014 Nat. Nanotechnol. 9 1024 26 Kresse G and Furthm\"uller J 1996 Phys. Rev. B 54 11169 27 Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 28 Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 29 Zhang Y and Yang W 1998 Phys. Rev. Lett. 80 890 30 Mabiala-Poaty H, Douma D, M'Passi-Mabiala B and Mapasha R E 2018 Journal of Physics and Chemistry of Solids 120 211 31 Li W, Carrete J, Katcho N A and Mingo N 2014 Computer Physics Communications 185 1747 32 Li W, Mingo N, Lindsay L, Broido D A, Stewart D A and Katcho N A 2012 Phys. Rev. B 85 195436 33 Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106 34 Feng T and Ruan X 2016 Phys. Rev. B 93 045202 35 Guo S D and Liu J T 2017 Phys. Chem. Chem. Phys. 19 31982 36 Qin D, Yan P, Ding G, Ge X, Song H and Gao G 2018 Scientific Reports 8 1 37 Rashid Z, Nissimagoudar A S and Li W 2019 Phys. Chem. Chem. Phys. 21 5679 38 Liu P F, Bo T, Liu Z, Eriksson O, Wang F, Zhao J and Wang B T 2018 J. Mater. Chem. C 6 12689 39 Molina-Sanchez A and Wirtz L 2011 Phys. Rev. B 84 155413 40 Huang L F, Gong P L and Zeng Z 2014 Phys. Rev. B 90 045409 41 Togo A and Tanaka I 2015 Scripta Materialia 108 1 42 Gu X and Yang R 2014 Appl. Phys. Lett. 105 131903 43 Yuan K, Zhang X, Li L and Tang D 2019 Phys. Chem. Chem. Phys. 21 468 44 Peng B, Zhang H, Shao H, Xu Y, Zhang X and Zhu H 2016 RSC Adv. 6 5767 45 Morelli D and Heremans J 2002 Appl. Phys. Lett. 81 5126 46 Peng C, Qin G, Zhang L, Zhang G, Wang C, Yan Y, Wang Y and Hu M 2018 J. Phys. D: Appl. Phys. 51 315303 47 Gu X, Li B and Yang R 2016 J. Appl. Phys. 119 085106 48 Lee S, Esfarjani K, Mendoza J, Dresselhaus M S and Chen G 2014 Phys. Rev. B 89 085206 49 Qin G and Hu M 2018 npj Computational Materials 4 1 50 Lee S, Esfarjani K, Luo T, Zhou J, Tian Z and Chen G 2014 Nat. Commun. 5 1 51 Guo R, Jho Y D and Minnich A J 2018 Nanoscale 10 14432 52 Peimyoo N, Shang J, Yang W, Wang Y, Cong C and Yu T 2015 Nano Research 8 1210 53 Jiang P, Qian X, Gu X and Yang R 2017 Adv. Mater. 29 1701068 54 Mobaraki A, Kandemir A, Yapicioglu H, G\"ulseren O and Sevik C 2018 Computational Materials Science 144 92 55 Gu X, Wei Y, Yin X, Li B and Yang R 2018 Rev. Mod. Phys. 90 041002 56 Gu X and Yang R 2015 J. Appl. Phys. 117 025102 57 Minnich A J, Johnson J A, Schmidt A J, Esfarjani K, Dresselhaus M S, Nelson K A and Chen G 2011 Phys. Rev. Lett. 107 095901 58 Liu P F, Bo T, Xu J, Yin W, Zhang J, Wang F, Eriksson O and Wang B T 2018 Phys. Rev. B 98 235426 59 Gao Y, Jing Y, Liu J, Li X and Meng Q 2017 Applied Thermal Engineering 113 1419 60 Togo A, Chaput L and Tanaka I 2015 Phys. Rev. B 91 094306 61 Lindsay L and Broido D 2008 J. Phys.: Condens. Matter 20 165209 62 Slack G A 1979 Solid State Physics 34 1 63 Shao H, Tan X, Hu T, Liu G Q, Jiang J and Jiang H 2015 Europhys. Lett. 109 47004 64 Ding Y and Xiao B 2015 Rsc Advances 5 18391 65 Mounet N and Marzari N 2005 Phys. Rev. B 71 205214 66 Morelli D, Jovovic V and Heremans J 2008 Phys. Rev. Lett. 101 035901 67 Yang S S, Hou Y and Zhu L L 2019 Chin. Phys. B 28 086501 68 Cai Y, Pei Q X, Zhang G and Zhang Y W 2016 J. Appl. Phys. 119 065102 69 Du A, Sanvito S, Li Z, Wang D, Jiao Y, Liao T, Sun Q, Ng Y H, Zhu Z and Amal R 2012 J. Am. Chem. Soc. 134 4393 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|