|
|
Entropy squeezing for a V-type three-level atom interacting with a single-mode field and passing through the amplitude damping channel with weak measurement |
Cui-Yu Zhang(张翠玉) and Mao-Fa Fang(方卯发) |
Synergetic Innovation Center for Quantum Effects and Applications, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of\vglue2pt Ministry of Education, School of Physics and Electronics, Hunan Normal University, Changsha\/ 410081, China |
|
|
Abstract The entropy squeezing of a V-type three-level atom interacting with a single-mode field and passing through the amplitude damping channel is investigated in detail. Our results show that when coupled to the single-mode field, the atom in appropriate initial states can not only generate obvious entropy squeezing but also keep in the optimal squeezing state, while passing through the amplitude damping channel, the atom can generate entropy squeezing under the control of the weak measurement. Besides, it is proved again that as a measurement method for atomic squeezing, the entropy squeezing is precise and effective. Therefore our work is instructive for experiments in preparing three-level system information resource with ultra-low quantum noise.
|
Received: 24 June 2020
Revised: 13 August 2020
Accepted manuscript online: 27 August 2020
|
PACS:
|
03.67.-a
|
(Quantum information)
|
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
42.50.-p
|
(Quantum optics)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12064012 and 11374096).\vglue2pt |
Corresponding Authors:
†Corresponding author. E-mail: mffang@hunnu.edu.cn
|
Cite this article:
Cui-Yu Zhang(张翠玉) and Mao-Fa Fang(方卯发) Entropy squeezing for a V-type three-level atom interacting with a single-mode field and passing through the amplitude damping channel with weak measurement 2021 Chin. Phys. B 30 010303
|
1 Furusawa A, Sorensen J L, Braunstein S L, Fuchs C A, Kimble H J and Polzik E S Science 282 706 DOI: https://science.sciencemag.org/content/282/5389/7061998 2 Caves C M 1980 Phys. Rev. D 23 1693 DOI: https://journals.aps.org/prd/abstract/10.1103/PhysRevD.23.1693 3 Kitagawa M and Ueda M 1993 Phys. Rev. A 47 5138 DOI: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.47.5138 4 Wineland D J, Bollinger J J, Itano W M and Heinzen D J 1994 Phys. Rev. A 50 67 DOI: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.50.67 5 Sorensen A and Molmer K 1999 Phys. Rev. Lett. 83 2274 DOI: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.83.2274 6 Sorensen J L, Hald J and Polzik E S 1998 Phys. Rev. Lett. 80 3487 DOI: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.80.3487 7 Li X S, Lin D L and George T F 1989 Phys. Rev. A 40 2504 DOI: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.40.2504 8 Ashraf M M and Razmi M S K 1992 Phys. Rev. A 45 8121 DOI: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.45.8121 9 Zhou P and Peng J S 1991 Phys. Rev. A 44 3331 DOI: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.44.3331 10 Fang M F, Zhou P and Swain S 2000 J. Mod. Opt. 47 1043 DOI: https://www.tandfonline.com/doi/abs/10.1080/09500340008233404 11 Xiao X, Fang M F and Hu Y M 8949/84/04/045011 2011 Phys. Scr. 84 045011 DOI: https://iopscience.iop.org/article/10.1088/0031- 12 Yu M and Fang M F 13 Wang Y Y and Fang M F 1056/27/11/114207 2018 Chin. Phys. B 11 114207 DOI: https://rd.springer.com/article/10.1007 DOI: https://iopscience.iop.org/article/10.1088/1674- 14 Liu F F, Fang M F and Xu X 1056/28/6/060304 2019 Chin. Phys. B 6 060304 DOI: https://iopscience.iop.org/article/10.1088/1674- 15 Walborn S P, Lemelle D S, Almeida M P and Ribeiro P H S 2006 Phys. Rev. Lett. 96 090501 DOI: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.96.090501 16 Bourennane M, Karlsson A and Bjork G 2001 Phys. Rev. A 64 012306 DOI: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.64.012306 17 Cerf N J, Bourennane M, Karlsson A and Gisin N 2002 Phys. Rev. Lett. 88 127902 DOI: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.88.127902 18 Durt T, Cerf N J, Gisin N and Zukowski M 2003 Phys. Rev. A 67 012311 DOI: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.67.012311 19 Jafarpour M and Ashrafpour M 012- 0419- 2 2013 Quantum Inf. Process. 12 761 DOI: https://rd.springer.com/article/10.1007/s11128- 20 Kaszlikowski D, Gnaciski P, Zukowski M, Miklaszewski W and Zeilinger A 2000 Phys. Rev. Lett. 85 4418 DOI: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.85.4418 21 Riccardi A, Macchiavello C and Maccone L 2017 Phys. Rev. A 95 032109 DOI: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.95.032109 22 Hu M L, Hu X Y, Wang J C, Peng Y, Zhang Y R and Fan H Phys. Rep. 762 1 DOI: https://www.sciencedirect.com/science/article/abs/pii/S03701573183018932018 23 Basit A, Badshah F, Ali H and Ge G Q 5075/118/30002 2017 Europhys. Lett. 118 30002 DOI: https://iopscience.iop.org/article/10.1209/0295- 24 Guo Y N, Tian Q L, Zeng K and Chen P X 020- 02675- 9 2020 Quantum Inf. Process. 19 182 DOI: https://rd.springer.com/article/10.1007/s11128- 25 Wang S C, Yu Z W, Zou W J and Wang X B 2014 Phys. Rev. A 89 022318 DOI: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.89.022318 26 Guo Y N, Fang M F, Wang G Y and Zeng K 016- 1296- x 2016 Quantum Inf. Process. 15 2851 DOI: https://rd.springer.com/article/10.1007/s11128- 27 Korotkov A N 1999 Phys. Rev. B 60 5737 DOI: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.60.5737 28 Korotkov A N and Jordan A N 2006 Phys. Rev. Lett. 97 166805 DOI: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.97.166805 29 Sun Q Q, Amri M A, Davidovich L and Zubairy M S 2010 Phys. Rev. A 82 052323 DOI: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.82.052323 30 Kim Y S, Lee J C, Kwon O and Kim Y H Nat. Phys. 8 117 DOI: https://www.nature.com/articles/nphys21782012 31 Xiao X and Li Y L 40036- 3 2013 Eur. Phys. J. D 67 204 DOI: https://link.springer.com/article/10.1140/epjd/e2013- |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|