|
|
Metal-insulator phase transition and topology in a three-component system |
Shujie Cheng(成书杰) and Xianlong Gao(高先龙)† |
Department of Physics, Zhejiang Normal University, Jinhua 321004, China |
|
|
Abstract Due to the topology, insulators become non-trivial, particularly those with large Chern numbers which support multiple edge channels, catching our attention. In the framework of the tight binding approximation, we study a non-interacting Chern insulator model on the three-component dice lattice with real nearest-neighbor and complex next-nearest-neighbor hopping subjected to \(\Lambda\)-or V-type sublattice potentials. By analyzing the dispersions of corresponding energy bands, we find that the system undergoes a metal-insulator transition which can be modulated not only by the Fermi energy but also the tunable extra parameters. Furthermore, rich topological phases, including the ones with high Hall plateau, are uncovered by calculating the associated band's Chern number. Besides, we also analyze the edge-state spectra and discuss the correspondence between Chern numbers and the edge states by the principle of bulk-edge correspondence. In general, our results suggest that there are large Chern number phases with C= 3 and the work enriches the research about large Chern numbers in multiband systems.
|
Received: 18 June 2020
Revised: 08 August 2020
Accepted manuscript online: 27 August 2020
|
PACS:
|
03.65.Vf
|
(Phases: geometric; dynamic or topological)
|
|
05.30.Rt
|
(Quantum phase transitions)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11835011 and 11774316). |
Corresponding Authors:
†Corresponding author. E-mail: gaoxl@zjnu.edu.cn
|
Cite this article:
Shujie Cheng(成书杰) and Xianlong Gao(高先龙) Metal-insulator phase transition and topology in a three-component system 2021 Chin. Phys. B 30 010302
|
1 Klitzing K V, Dorda G and Pepper M 1980 Phys. Rev. Lett. 45 494 2 Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045 3 Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057 4 Shen S Q 2012 Topological Insulators(Berlin: Springer-Verlag) pp. 1-221 5 Goldman N, Budich J C and Zoller P 2016 Nat. Phys. 12 639 6 Eckardt A 2017 Rev. Mod. Phys. 89 011004 7 Aidelsburger M, Nascimbene S and Goldman N 2018 C. R. Phys. 19 394 8 Ozawa T, Price H M, Amo A, Goldman N, Hafezi M, Lu L, Rechtsman M C, Schuster D, Simon J, Zilberberg O and Carusotto I 2019 Rev. Mod. Phys. 91 015006 9 Cooper N, Dalibard J and Spielman I 2019 Rev. Mod. Phys. 91 015005 10 Zeng Q B, Yang Y B and Xu Y 2020 Phys. Rev. B 101 241104(R) 11 Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802 12 Thouless D J, Kohmoto M, Nightngale M P and Den Nijs M 1982 Phys. Rev. Lett. 49 405 13 Hatsugai Y 1993 Phys. Rev. Lett. 71 3697 14 Chiu C K, Teo J C Y, Schnyder A P and Ryu S 2016 Rev. Mod. Phys. 88 035005 15 Chang C Z, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P, Wang L L, Ji Z Q, Feng Y, Li S, Chen X, Jia J, Dai X, Fang Z, Zhang S C, He K, Wang Y, Lu L, Ma X C and Xue Q K 2013 Science 340 167 16 Chang C Z, Zhao W, Kim D Y, Zhang H, Assaf B A, Heiman D, Zhang S C, Liu C, Chan M H W and Moodera J S 2015 Nat. Mater. 14 473 17 Deng Y, Yu Y, Shi M Z, Guo Z, Xu Z, Wang J, Chen X H and Zhang Y 2020 Science 367 895 18 Kou X F, Guo S T, Fan Y B, Pan L, Lang M R, Jiang Y, Shao Q M, Nie T X, Murata K, Tang J S, Wang Y, He L, Lee W L and Wang K L 2014 Phys. Rev. Lett. 113 137201 19 Checkelsky J G, Yoshimi R, Tsukazaki A, Takahashi K S, Kozuka Y, Falson J, Kawasaki M and Tokura 2014 Nat. Phys. 10 731 20 Mogi M, Yoshimi R, Tsukazaki A, Yasuda K, Kozuka Y, Takahashi K S, Kawasaki M and Tokura Y 2015 Appl. Phys. Lett. 107 182401 21 Ou Y, Liu C, Jiang G, Feng Y, Zhao D, Wu W, Wang X X, Li W, Song C, Wang L L, Wang W, Wu W, Wang Y, He K, Ma X C and Xue Q K 2017 Adv. Mater. 30 1703062 22 Serlin M, Tschirhart C L, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L and Young A F 2020 Science 367 900 23 Sharpe A L, Fox E J, Barnard A W, Finney J, Watanabe K, Taniguchi T, Kastner M A and Goldhaber-Gordon D 2019 Science 365 605 24 Ge J, Liu Y, Li J, Li H, Luo T, Wu Y, Xu Y and Wang J 2020 Natl. Sci. Rev. 25 Chen G R, Sharpe A L, Fox E J, Zhang Y H, Wang S X, Jiang L L, Lyu B S, Li H Y, Watanabe K, Taniguchi T, Shi Z W, Senthil T, Goldhaber-Gordon D, Zhang Y B and Wang F 2020 Nature 579 56 26 Alba E, Fernandez-Gonzalvo X, Mur-Petit J, Pachos J K and Garcia-Ripoll J J 2011 Phys. Rev. Lett. 107 235301 27 Cooper N R 2011 Phys. Rev. Lett. 106 175301 28 Dalibard J, Gerbier F, Juzeli\=unas G and öhberg P 2011 Rev. Mod. Phys. 83 1523 29 Tarruell L, Greif D, Uehlinger T, Jotzu G and Essinger T 2012 Nature 483 302 30 Mayake K, Siviloglou G A, Kennedy C J, Burton W C and Ketterle W 2013 Phys. Rev. Lett. 111 185302 31 Goldman N, Anisimovas E, Gerbier F, öhberg P, Spielman I B and Juzeli\=unas G 2013 New J. Phys. 15 013025 32 Aidelsburger M, Atala M, Lohse M, Barreiro J T, Paredes B and Bloch I 2013 Phys. Rev. Lett. 111 185301 33 Jotzu G, Messer M, Desbuquois R, Lebrat M, Uehlinger T, Greif D and Esslinger T 2014 Nature 515 237 34 Aidelsburger M, Lohse M, Schweizer C, Atala M, Barreiro J T, Nascimbene S, Cooper N, Bloch I and Goldman N 2015 Nat. Phys. 11 162 35 Tai M E, Lukin A, Rispoli M, Schittko R, Menke T, Borgnia D, Preiss P M, Grusdt F, Kaufman A M,Greiner M 2017 Nature 546 519 36 Fläschner N, Vogel D, Tarnowski M, Rem B, Lühmann D S, Heyl M, Budich J, Mathey L, Sengstock K,Weitenberg C 2018 Nat. Phys. 14 265 37 Wu C 2008 Phys. Rev. Lett. 101 186807 38 Shao L B, Zhu S L, Sheng L, Xing D Y and Wang Z D 2008 Phys. Rev. Lett. 101 246810 39 Oka T and Aoki H 2009 Phys. Rev. B 79 081406 (R) 40 Haldane F D M 1988 Phys. Rev. Lett. 61 2015 41 Hofstadter D R 1976 Phys. Rev. B 14 2239 42 Lohse M, Schweizer C, Zilberberg O, Aidelsburger M and Bloch I 2016 Nat. Phys. 12 350 43 Lohse M, Schweizer C, Price H M, Zilberberg O and Bloch I 2018 Nature 553 55 44 Atala M, Aidelsburger M, Lohse M, Barreiro J T, Paredes B and Bloch I 2014 Nat. Phys. 10 588 45 Mancini M, Pagano G, Cappellini G, Livi L, Rider M, Catani J, Sias C, Zoller P, Inguscio M, Dalmonte M and Fallani L 2015 Science 349 1510 46 Stuhl B, Lu H I, Aycock L, Genkina D and Spielman I B 2015 Science 349 1514 47 Tarnowski M, ünal F N, Fläschner N, Rem B S, Eckardt A, Sengstock K and Weitenberg C 2019 Nat. Comm. 10 1728 48 Asteria L, Tran D T, Ozawa T, Tarnowski M, Rem B S, Fläschner N, Sengstock K, Goldman N and Weitenberg C 10.1038/s41567-019-0417-8 2019 Nat. Phys. 15 449 49 Xu Z, Zhang Y and Chen S 2017 Phys. Rev. A 96 013606 50 Andrijauskas T, Anisimovas E, Ra\vci\=unas M, Mekys A, Kudria\vsov V, Spielman I B and Juzeli\=unas G 2015 Phys. Rev. A 92 033617 51 Cheng S J, Yin H H, Lu Z P, He C C, Wang P and Xianlong G 2020 Phys. Rev. A 101 043620 52 Sutherland B 1986 Phys. Rev. B 34 5208 53 Vidal J, Butaud P, Doucot B and Mosseri R 10.1103/PhysRevB.64.155306 2001 Phys. Rev. B 64 155306 54 Bercioux D, Urban D F, Grabert H and Häusler W 2009 Phys. Rev. A 80 063603 55 Möller G and Cooper N R 2012 Phys. Rev. Lett. 108 045306 56 Rizzi M, Cataudella V and Fazio R 2006 Phys. Rev. B 73 144511 57 Burkov A A and Demler E 2006 Phys. Rev. Lett. 96 180406 58 Bercioux D, Goldman N and Urban D F 2011 Phys. Rev. A 83 023609 59 Dey B, Kapri P, Pal O and Ghosh T K 2020 Phys. Rev. B 101 235406 60 Rudner M S, Lindner N H, Berg E and Levin M 2013 Phys. Rev. X 3 031005 61 Khanna G, Mukhopadhyay S, Simon R and Mukunda N 10.1006/aphy.1997.5601 1997 Ann. Phys. 253 55 62 Sachdev S 2011 Quantum Phase Transitions 2nd edn. (Cambridge: Cambridge University Press) 63 Barnett R, Boyd G R and Galitski V 2012 Phys. Rev. Lett. 109 235308 64 Georgi H Lie Algebras In Particle Physics: from Isospin To Unified Theories(Reading, Mass: Benjamin/Cummings) pp. 98-100 65 Setyawan W and Curtarolo S 2010 Comp. Mater. Sci. 49 299 66 Wang P, Schmitt M and Kehrein S 2016 Phys. Rev. B 93 085134 67 Okamoto S and Xiao D 2018 J. Phys. Soc. Jpn. 87 041006 68 Doennig D, Pickett W E and Pentcheva R 2013 Phys. Rev. Lett. 111 126804 69 Rawl R, Lee M, Choi E S, Li G, Chen K W, Baumbach R, Cruz C R d, Ma J and Zhou H D 2017 Phys. Rev. B 95 174438 70 Schleid T and Meyer G 1994 Z. Krist-Cryst Mater. 209 371 71 Ryazanov M, Simon A and Mattausch H 2006 Inorg. Chem. 45 10728 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|