CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Field-induced N\'eel vector bi-reorientation of a ferrimagnetic insulator in the vicinity of compensation temperature |
Peng Wang(王鹏)1,†, Hui Zhao(赵辉)2, Zhongzhi Luan(栾仲智)2, Siyu Xia(夏思宇)2, Tao Feng(丰韬)2, and Lifan Zhou(周礼繁)2,‡ |
1 College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061, China; 2 National Laboratory of Solid State Microstructures, Jiangsu Provincial Key Laboratory for Nanotechnology and Department of Physics, Nanjing University, Nanjing 210093, China |
|
|
Abstract The spin Hall magnetoresistance (SMR) effect in Pt/Gd3Fe5O12 (GdIG) bilayers was systematically investigated. The sign of SMR changes twice with increasing magnetic field in the vicinity of the magnetization compensation point (T M) of GdIG. However, conventional SMR theory predicts the invariant SMR sign in the heterostructure composed of a heavy metal film in contact with a ferromagnetic or antiferromagnetic film. We conclude that this is because of the significant enhancement of the magnetic moment of the Gd sub-lattice and the unchanged moment of the Fe sub-lattice with a relatively large field, meaning that a small net magnetic moment is induced at T M. As a result, the N\'eel vector aligns with the field after the spin-flop transition, meaning that a bi-reorientation of the N\'eel vector is produced. Theoretical calculations based on the N\'eel's theory and SMR theory also support our conclusions. Our findings indicate that the N\'eel-vector direction of a ferrimagnet can be tuned across a wide range by a relatively low external field around T M.
|
Received: 25 July 2020
Revised: 05 September 2020
Accepted manuscript online: 28 September 2020
|
PACS:
|
75.47.-m
|
(Magnetotransport phenomena; materials for magnetotransport)
|
|
75.50.Gg
|
(Ferrimagnetics)
|
|
75.60.Jk
|
(Magnetization reversal mechanisms)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0303202 and 2016YFA0300803), the National Natural Science Foundation of China (Grant Nos. 11904194, 11727808, and 11674159), and the Fundamental Research Funds for the Central Universities, China (Grant No. 020414380121). |
Corresponding Authors:
†Corresponding author. E-mail: pwang7000@163.com ‡Corresponding author. E-mail: lifan-zhou@foxmail.com
|
Cite this article:
Peng Wang(王鹏), Hui Zhao(赵辉), Zhongzhi Luan(栾仲智), Siyu Xia(夏思宇), Tao Feng(丰韬), and Lifan Zhou(周礼繁) Field-induced N\'eel vector bi-reorientation of a ferrimagnetic insulator in the vicinity of compensation temperature 2021 Chin. Phys. B 30 027501
|
1 Ivanov B A 2019 Low Temp. Phys. 45 935 2 Caretta L, Mann M, B\"uttner F, Ueda K, Pfau B, G\"unther C M, Hessing P, Churikova A, Klose C, Schneider M, Engel D, Marcus C, Bono D, Bagschik K, Eisebitt S and Beach G S D 2018 Nat. Nanotechnol. 13 1154 3 Yang S H, Ryu K S and Parkin S 2015 Nat. Nanotechnol. 10 221 4 Mishra R, Yu J, Qiu X, Motapothula M, Venkatesan T and Yang H 2017 Phys. Rev. Lett. 118 167201 5 Kim K J, Kim S K, Hirata Y, Oh S H, Tono T, Kim D H, Okuno T, Ham W S, Kim S, Go G, Tserkovnyak Y, Tsukamoto A, Moriyama T, Lee K J and Ono T 2017 Nat. Mater. 16 1187 6 Baltz V, Manchon A, Tsoi M, Moriyama T, Ono T and Tserkovnyak Y 2018 Rev. Mod. Phys. 90 15005 7 Wadley P, Howells B, Elezny J, Andrews C, Hills V, Campion R P, Novak V, Olejnik K, Maccherozzi F, Dhesi S S, Martin S Y, Wagner T, Wunderlich J, Freimuth F, Mokrousov Y, Kune J, Chauhan J S, Grzybowski M J, Rushforth A W, Edmonds K W, Gallagher B L and Jungwirth T 2016 Science 351 587 8 Chen X Z, Zarzuela R, Zhang J, Song C, Zhou X F, Shi G Y, Li F, Zhou H A, Jiang W J, Pan F and Tserkovnyak Y 2018 Phys. Rev. Lett. 120 207204 9 Baldrati L, Gomonay O, Ross A, Filianina M, Lebrun R, Ramos R, Leveille C, Fuhrmann F, Forrest T R, Maccherozzi F, Valencia S, Kronast F, Saitoh E, Sinova J and Kl\"aui M 2019 Phys. Rev. Lett. 123 177201 10 Chiang C C, Huang S Y, Qu D, Wu P H and Chien C L 2019 Phys. Rev. Lett. 123 227203 11 Mills D L 1968 Phys. Rev. Lett. 20 18 12 Wu S M, Zhang W, KC A, Borisov P, Pearson J E, Jiang J S, Lederman D, Hoffmann A and Bhattacharya A 2016 Phys. Rev. Lett. 116 097204 13 Lebrun R, Ross A, Bender S A, Qaiumzadeh A, Baldrati L, Cramer J, Brataas A, Duine R A and Kl\"aui M 2018 Nature 561 222 14 Qaiumzadeh A, Skarsvåg H, Holmqvist C and Brataas A 2017 Phys. Rev. Lett. 118 137201 15 Yuan W, Zhu Q, Su T, Yao Y, Xing W, Chen Y, Ma Y, Lin X, Shi J, Shindou R, Xie X C and Han W 2018 Sci. Adv. 4 eaat1098 16 Jacobs I S 1961 J. Appl. Phys. 32 S61 17 Machado F L A, Ribeiro P R T, Holanda J, Rodr\'íguez-Su\'arez R L, Azevedo A and Rezende S M 2017 Phys. Rev. B 95 104418 18 Strohm C, Roth T, Detlefs C, van der Linden P and Mathon O 2012 Phys. Rev. B 86 214421 19 Becker J, Tsukamoto A, Kirilyuk A, Maan J C, Rasing T, Christianen P C M and Kimel A V 2017 Phys. Rev. Lett. 118 117203 20 Dong B W, Cramer J, Ganzhorn K, Yuan H Y, Guo E J, Goennenwein S T B and Kl\"aui M 2017 J. Phys.: Condens. Matter 30 035802 21 Bernasconi J and Kuse D 1971 Phys. Rev. B 3 811 22 Nakayama H, Althammer M, Chen Y T, Uchida K, Kajiwara Y, Kikuchi D, Ohtani T, Gepr\"ags S, Opel M, Takahashi S, Gross R, Bauer G E W, Goennenwein S T B and Saitoh E 2013 Phys. Rev. Lett. 110 206601 23 Wang S, Li G, Wang J, Tian Y, Zhang H, Zou L, Sun J and Jin K 2018 Chin. Phys. B 27 117201 24 Hoogeboom G R, Aqeel A, Kuschel T, Palstra T T M and Van Wees B J 2017 Appl. Phys. Lett. 111 052409 25 Fischer J, Gomonay O, Schlitz R, Ganzhorn K, Vlietstra N, Althammer M, Huebl H, Opel M, Gross R, Goennenwein S T B and Gepr\"ags S 2018 Phys. Rev. B 97 014417 26 Hou D, Qiu Z, Barker J, Sato K, Yamamoto K, Vélez S, Gomez-Perez J M, Hueso L E, Casanova F and Saitoh E 2017 Phys. Rev. Lett. 118 147202 27 Smart J S 1955 Am. J. Phys. 23 356 28 Chen Y T, Takahashi S, Nakayama H, Althammer M, Goennenwein S T B, Saitoh E and Bauer G E W 2013 Phys. Rev. B 87 144411 29 Bayaraa T, Xu C, Campbell D and Bellaiche L 2019 Phys. Rev. B 100 214412 30 Wang L W, Xie L S, Xu P X and Xia K 2020 Phys. Rev. B 101 165137 31 Rodi\'c D, Tomkowicz Z, Novakovi\'c L, Szytula A and Napijalo M L 1990 Solid State Commun. 73 243 32 Rovani P R, Ferreira A S, Pereira A S and de Lima J C 2017 J. Appl. Phys. 122 035904 33 Aliev S M, Kamilov I K, Aliev M S and Ibaev Z G 2014 Phys. Solid State 56 1114 34 Mee C D 1967 Contemp. Phys. 8 385 35 Sawatzky E and Kay E 1969 J. Appl. Phys. 40 1460 36 Clark A E and Callen E 1968 J. Appl. Phys. 39 5972 37 Anderson P W 1950 Phys. Rev. 79 705 38 Nibarger J P, Lopusnik R, Celinski Z and Silva T J 2003 Appl. Phys. Lett. 83 93 39 Hellman F, Queen D R, Potok R M and Zink B L 2000 Phys. Rev. Lett. 84 5411 40 Eremenko V V and Kharchenko N F 1979 Phase Transitions 1 61 41 Ganzhorn K, Barker J, Schlitz R, Piot B A, Ollefs K, Guillou F, Wilhelm F, Rogalev A, Opel M, Althammer M, Gepr\"ags S, Huebl H, Gross R, Bauer G E W and Goennenwein S T B 2016 Phys. Rev. B 94 094401 42 Velez S, Golovach V N, Bedoya-Pinto A, Isasa M, Sagasta E, Abadia M, Rogero C, Hueso L E, Bergeret F S and Casanova F 2016 Phys. Rev. Lett. 116 016603 43 Miao B F, Huang S Y, Qu D and Chien C L 2014 Phys. Rev. Lett. 112 236601 44 Wang P, Jiang S W, Luan Z Z, Zhou L F, Ding H F, Zhou Y, Tao X D and Wu D 2016 Appl. Phys. Lett. 109 112406 45 Luan Z Z, Zhou L F, Wang P, Zhang S, Du J, Xiao J, Liu R H and Wu D 2019 Phys. Rev. B 99 174406 46 Marmion S R, Ali M, McLaren M, Williams D A and Hickey B J 2014 Phys. Rev. B 89 220404 47 Wang S, Zou L, Zhang X, Cai J, Wang S, Shen B and Sun J 2015 Nanoscale 7 17812 48 Lin W and Chien C L 2017 Phys. Rev. Lett. 118 067202 49 Shang T, Zhan Q F, Yang H L, Zuo Z H, Xie Y L, Liu L P, Zhang S L, Zhang Y, Li H H, Wang B M, Wu Y H, Zhang S and Li R W 2016 Appl. Phys. Lett. 109 032410 50 Luan Z Z, Chang F F, Wang P, Zhou L F, Cooper J F K, Kinane C J, Langridge S, Cai J W, Du J, Zhu T and Wu D 2018 Appl. Phys. Lett. 113 072406 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|