1. State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-electronics, Shanxi University, Taiyuan 030006, China; 2. Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Abstract We experimentally realize two-dimensional (2D) single-layer ultracold gases of 87Rb by dynamically tuning the periodicity of a standing wave, known as accordion lattice. In order to load 87Rb Bose—Einstein condensate into single dark fringe node of the blue detuning optical lattice, we reduce the lattice periodicity from 26.7 μ to 3.5 μ with the help of an acousto-optic deflector (AOD) to compress the three-dimensional BEC adiabatically into a flat and uniform quasi-2D single-layer. We describe the experimental procedure of the atoms loading into the accordion lattice in detail and present the characteristics of the quasi-2D ultracold gases. This setup provides an important platform for studying in- and out-of equilibrium physics, phase transition and 2D topological matter.
Fund: Project supported by the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302003), the National Key Research and Development Program of China (Grant Nos. 2016YFA0301602, 2018YFA0307601, and 2021YFA1401700), the National Natural Science Foundation of China (Grant Nos. 12034011, 92065108, 11974224, 12022406, and 12004229), the Natural Science Basic Research Plan of Shaanxi Province, China (Grant No. 2019JQ- 058), and the Fund for Shanxi “1331 Project” Key Subjects Construction.
Liangwei Wang(王良伟), Kai Wen(文凯), Fangde Liu(刘方德), Yunda Li(李云达), Pengjun Wang(王鹏军), Lianghui Huang(黄良辉), Liangchao Chen(陈良超), Wei Han(韩伟), Zengming Meng(孟增明), and Jing Zhang(张靖) Experimental realization of two-dimensional single-layer ultracold gases of 87Rb in an accordion lattice 2022 Chin. Phys. B 31 103401
[1] Jaksch D, Bruder C, Cirac J I, Gardiner C W and Zoller P 1998 Phys. Rev. Lett. 81 3108 [2] Greiner M, Mandel O, Esslinger T, Hönsch T W and Bloch I 2002 Nature 415 39 [3] Winkler K, Thalhammer G, Lang F, Grimm R, Denschlag J H, Daley A J, Kantian A, Büchler H P and Zoller P 2006 Nature 441 853 [4] Esslinger T 2010 Annu. Rev. Condens. Matter Phys. 1 129 [5] Cheuk L W, Nichols M A, Lawrence K R, Okan M, Zhang H, Khatami E, Trivedi N, Paiva T, Rigol M and Zwierlein M W 2016 Science 353 1260 [6] Parsons M F, Mazurenko A, Chiu C S, Ji G, Greif D and Greiner M 2016 Science 353 1253 [7] Ha L C, Hung C L, Zhang X, Eismann U, Tung S K and Chin C 2013 Phys. Rev. Lett. 110 145302 [8] Wen K, Wang L W, Zhou F, Chen L C, Wang P J, Meng Z M and Zhang J 2020 Acta. Phys. Sin. 69 193201 (in Chinese) [9] Chen L C, Wang P J, Meng Z M, Huang L H, Cai H, Wang D W, Zhu S Y and Zhang J 2018 Phys. Rev. Lett. 120 193601 [10] Yang G Y, Chen L C, Mi C D, Wang P J and Zhang J 2018 Journal of Quantum Optics 24 156 [11] Chen L C, Yang G Y, Meng Z M, Huang L H and Wang P J 2017 Journal of Quantum Optics 23 246 [12] Paredes B, Widera A, Murg V, Mandel O, Fölling S, Cirac I, Shlyapnikov G V, H ö nsch T W and Bloch I 2004 Nature 429 277 [13] Tolra B L, O'Hara K M, Huckans J H, Phillips W D, Rolston S L and Porto J V 2004 Phys. Rev. Lett. 92 190401 [14] Palzer S, Zipkes C, Sias C and Köhl M 2009 Phys. Rev. Lett. 103 150601 [15] Fallani L, Fort C, Lye J E and Inguscio M 2005 Opt. Express 13 4303 [16] Huckans J H 2006 Optical Lattices and Quantum Degenerate 87 Rb in Reduced Dimensions ( Ph.D. thesis ) (University of Maryland) [17] Kosterlitz J M and Thouless D J 1972 J. Phys. C: Solid State Phys. 5 L124 [18] Kosterlitz J M and Thouless D J 1973 J. Phys. C: Solid State Phys. 6 1181 [19] Kosterlitz J M 2017 Rev. Mod. Phys. 89 040501 [20] Hadzibabic Z, Krüger P, Cheneau M, Battelier B and Dalibard J 2006 Nature 441 1118 [21] Schweikhard V, Tung S and Cornell E A 2007 Phys. Rev. Lett. 99 030401 [22] Hadzibabic Z, Krüger P, Cheneau M, Rath S P and Dalibard J 2008 New J. Phys. 10 045006 [23] Murthy P A, Boettcher I, Bayha L, Holzmann M, Kedar D, Neidig M, Ries M G, Wenz A N, Zürn G and Jochim S 2015 Phys. Rev. Lett. 115 010401 [24] Gemelke N, Zhang X, Hung C L and Chin C 2009 Nature 460 995 [25] Choi J y, Seo S W and Shin Y i 2013 Phys. Rev. Lett. 110 175302 [26] Mihalache D, Mazilu D, Malomed B A and Lederer F 2006 Phys. Rev. A 73 043615 [27] Rath S P, Yefsah T, Günter K J, Cheneau M, Desbuquois R, Holzmann M, Krauth W and Dalibard J 2010 Phys. Rev. A 82 013609 [28] Kendrick L H 2019 An optical accordion trap for two-dimensional ultracold gases of 6Li and 23Na ( Ph.D. thesis ) (Massachusetts Institute of Technology) [29] Venkatakrishnan K, Sivakumar N R, Hee C W, Tan B, Liang W L and Gan G K 2003 Appl. Phys. A 77 959 [30] Williams R A, Pillet J D, Al-Assam S, Fletcher B, Shotter M and Foot C J 2008 Opt. Express 16 16977 [31] Al-Assam S, Williams R A and Foot C J 2010 Phys. Rev. A 82 021604 [32] Lippi E 2017 Realization of a large-spacing optical lattice for trapping fermionic lithium gases in two dimensions ( Master thesis ) (University of Firenze) [33] Ville J L, Bienaimé T, Saint-Jalm R, Corman L, Aidelsburger M, Chomaz L, Kleinlein K, Perconte D, Nascimbéne S, Dalibard J and Beugnon J 2017 Phys. Rev. A 95 013632 [34] Mitra D 2018 Exploring attractively interacting fermions in 2D using a quantum gas microscope ( Ph.D. thesis ) (Princeton University) [35] Christenhusz M T M 2020 2D Box Traps for Bose-Einstein Condensates ( Master thesis ) (University of Twente) [36] Gauthier G 2019 Transport and turbulence in quasi-uniform and versatile Bose-Einstein condensates ( Ph.D. thesis ) (The University of Queensland) [37] Petrov D S, Holzmann M and Shlyapnikov G V 2000 Phys. Rev. Lett. 84 2551 [38] Yefsah T, Desbuquois R, Chomaz L, Günter K J and Dalibard J 2011 Phys. Rev. Lett. 107 130401 [39] Bakkali-Hassani B, Maury C, Zou Y Q, Le Cerf É, Saint-Jalm R, Castilho P C M, Nascimbene S, Dalibard J and Beugnon J 2021 Phys. Rev. Lett. 127 023603 [40] Chen C A and Hung C L 2021 Phys. Rev. Lett. 127 023604 [41] Chai S J, Wang P J, Fu Z K, Huang L H and Zhang J 2012 Journal of Quantum Optics 18 171 [42] Wu Y D, Meng Z M, Wen K, Mi C D, Zhang J and Zhai H 2020 Chin. Phys. Lett. 37 103201 [43] Peng P, Huang L H, Li D H, Wang P J, Meng Z M and Zhang J 2018 Chin. Phys. Lett. 35 063201 [44] Meng Z M, Wang L W, Han W, Liu F D, Wen K, Gao C, Wang P J, Chin C and Zhang J 2018 arXiv:2110.00149v2 [cond-mat.quant-gas]
The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
A new direct band gap silicon allotrope o-Si32 Xin-Chao Yang(杨鑫超), Qun Wei(魏群), Mei-Guang Zhang(张美光), Ming-Wei Hu(胡明玮), Lin-Qian Li(李林茜), and Xuan-Min Zhu(朱轩民). Chin. Phys. B, 2022, 31(2): 026104.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.