Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(11): 114401    DOI: 10.1088/1674-1056/ab48dc
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Heat transfer of liquid metal alloy on copper plate deposited with film of different surface free energy

Huilong Yan(闫慧龙)1, Jinliang Yan(闫金良)2, Gang Zhao(赵刚)2
1 Key Laboratory of Thermo-Fluid Science and Engineering(Ministry of Education), School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China;
2 School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China
Abstract  Liquid metal alloys (LMAs) are the potential candidates of thermal interface materials (TIMs) for electronics cooling. In the present work, buffer layers of Ag, Ti, Cu, Ni, Mo, and W were deposited on polished Cu plates by DC magnetron sputtering, the contact angles of de-ionized water and diiodomethane on the buffer layers were measured by an easy drop shape analyzer and the surface free energies (SFEs) of the buffer layers were calculated by the Owens-Wendt-Kaelble equation. Samples were prepared by sandwiching the filmed Cu plates and LMAs. The thermal properties of the samples were measured by laser flash analysis method. The SFE of the buffer layer has a strong influence on the interface heat transfer, whereas the measurement temperature has no obvious effect on the thermal properties of the samples. As the SFE of the buffer layer increases, the wettability, thermal diffusivity, and thermal conductivity are enhanced, and the thermal contact resistance is decreased.
Keywords:  buffer layer      liquid metal alloy      thermal contact resistance      heat transfer      surface free energy  
Received:  15 April 2019      Revised:  23 September 2019      Accepted manuscript online: 
PACS:  44.10.+i (Heat conduction)  
  68.08.-p (Liquid-solid interfaces)  
  65.40.gp (Surface energy)  
  68.08.Bc (Wetting)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11874191) and the Natural Science Foundation of Shandong Province, China (Grant No. ZR2016FM38).
Corresponding Authors:  Huilong Yan, Jinliang Yan     E-mail:  18742514109@163.com;yanjinliang8@sina.com

Cite this article: 

Huilong Yan(闫慧龙), Jinliang Yan(闫金良), Gang Zhao(赵刚) Heat transfer of liquid metal alloy on copper plate deposited with film of different surface free energy 2019 Chin. Phys. B 28 114401

[1] Zhang Z W and Chen J 2018 Chin. Phys. B 27 035101
[2] Sarafraz M M, Arya A, Hormozi F and Nikkhah V 2017 Appl. Therm. Eng. 112 1373
[3] Yang X H and Liu J 2018 Adv. Heat Transfer. 50 187
[4] McNamara A J, Joshi Y and Zhang Z M 2012 Int. J. Therm. Sci. 62 2
[5] Mei S F, Gao Y X, Deng Z S and Liu J 2014 ASME J. Electron. Packag. 136 011009
[6] Sim L C, Ramanan S R, Ismail H, Seetharamu K N and Goh T J 2005 Thermochim. Acta 430 155
[7] Yuan C, Xie B, Huang M Y, Wu R K and Luo X B 2016 Int. J. Heat Mass Tran. 94 20
[8] Wang S, Cheng Y, Wang R, Sun J and Gao L 2014 ACS Appl. Mater. Interfaces 6 6481
[9] Zhang P, Li Q and Xuan Y M 2014 Compos. Part. A-Appl. S. 57 1
[10] Yu C H, Shi L, Yao Z, Li D Y and Majumdar A 2005 Nano Lett. 5 1842
[11] Nylander A N, Fu Y F, Huang M L and Liu J 2019 IEEE Trans. Compon. Packag. Manuf. Technol. 9 427
[12] Wang C Y, Lu S, Yu X D and Li H P 2019 Chin. Phys. B 28 016501
[13] Renteria J, Legedza S, Salgado R, Balandin M P, Ramirez S, Saadah M, Kargar F and Balandina A A 2015 Mater. Des. 88 214
[14] Yang E, Guo H Y, Guo J D, Shang J K and Wang M G 2014 Acta Metall. Sin. (Eng. Lett.) 27 290
[15] Ma K Q and Liu J 2007 Front. Energy Power Eng. Chin. 1 384
[16] Gao Y X and Liu J 2012 Appl. Phys. A 107 701
[17] Gao Y X, Wang X P, Liu J and Fang Q F 2017 ASME J. Electron. Packag. 139 011002
[18] Min S, Blumm J and Lindemann A 2007 Thermochim. Acta 455 46
[19] Fan C W and Lee S C 2007 Mater. Trans. 48 2449
[20] Fernando P S G, Daniel Y, Charles M, Ryo J, Nick T, Darceny Z B and Paulo G C 2013 Int. J. Biomater. 2013 354125
[21] Tao Z C, Guo Q G, Gao X Q and Liu L 2011 Mater. Chem. Phys. 128 228
[1] Effect of bio-tissue deformation behavior due to intratumoral injection on magnetic hyperthermia
Yundong Tang(汤云东), Jian Zou(邹建), Rodolfo C.C. Flesch, and Tao Jin(金涛). Chin. Phys. B, 2023, 32(3): 034304.
[2] Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films
Simin An(安思敏), Xingyu Gao(高兴誉), Xian Zhang(张弦), Xin Chen(陈欣), Jiawei Xian(咸家伟), Yu Liu(刘瑜), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰). Chin. Phys. B, 2023, 32(3): 036804.
[3] Influence of the lattice parameter of the AlN buffer layer on the stress state of GaN film grown on (111) Si
Zhen-Zhuo Zhang(张臻琢), Jing Yang(杨静), De-Gang Zhao(赵德刚), Feng Liang(梁锋), Ping Chen(陈平), and Zong-Shun Liu(刘宗顺). Chin. Phys. B, 2023, 32(2): 028101.
[4] Heat transport properties within living biological tissues with temperature-dependent thermal properties
Ying-Ze Wang(王颖泽), Xiao-Yu Lu(陆晓宇), and Dong Liu(刘栋). Chin. Phys. B, 2023, 32(1): 014401.
[5] Accurate prediction of the critical heat flux for pool boiling on the heater substrate
Fengxun Hai(海丰勋), Wei Zhu(祝薇), Xiaoyi Yang(杨晓奕), and Yuan Deng(邓元). Chin. Phys. B, 2022, 31(6): 064401.
[6] Numerical simulation of anode heat transfer of nitrogen arc utilizing two-temperature chemical non-equilibrium model
Chong Niu(牛冲), Surong Sun(孙素蓉), Jianghong Sun(孙江宏), and Haixing Wang(王海兴). Chin. Phys. B, 2021, 30(9): 095206.
[7] Continuous droplet rebound on heated surfaces and its effects on heat transfer property: A lattice Boltzmann study
Qing-Yu Zhang(张庆宇), Qi-Peng Dong(董其鹏), Shan-Lin Wang(王山林), Zhi-Jun Wang(王志军), and Jian Zhou(周健). Chin. Phys. B, 2021, 30(4): 044703.
[8] Model predictive inverse method for recovering boundary conditions of two-dimensional ablation
Guang-Jun Wang(王广军), Ze-Hong Chen(陈泽弘), Guang-Xiang Zhang(章广祥), and Hong Chen(陈红). Chin. Phys. B, 2021, 30(3): 030203.
[9] Anti-parity-time symmetric phase transition in diffusive systems
Pei-Chao Cao(曹培超) and Xue-Feng Zhu(祝雪丰). Chin. Phys. B, 2021, 30(3): 030505.
[10] Effects of heat transfer in a growing particle layer on microstructural evolution during solidification of colloidal suspensions
Jia-Xue You(游家学), Yun-Han Zhang(张运涵), Zhi-Jun Wang(王志军), Jin-Cheng Wang(王锦程), and Sheng-Zhong Liu(刘生忠). Chin. Phys. B, 2021, 30(2): 028103.
[11] Lattice Boltzmann simulation on thermal performance of composite phase change material based on Voronoi models
Meng-Yue Guo(郭孟月), Qun Han(韩群), Xiang-Dong Liu(刘向东), and Bo Zhou(周博). Chin. Phys. B, 2021, 30(10): 104401.
[12] An efficient inverse approach for reconstructing time- and space-dependent heat flux of participating medium
Shuang-Cheng Sun(孙双成), Guang-Jun Wang(王广军), and Hong Chen(陈红)$. Chin. Phys. B, 2020, 29(11): 110202.
[13] Tetraalkyl-substituted zinc phthalocyanines used as anode buffer layers for organic light-emitting diodes
Qian Chen(陈潜), Songhe Yang(杨松鹤), Lei Dong(董磊), Siyuan Cai(蔡思源), Jiaju Xu(许家驹), Zongxiang Xu(许宗祥). Chin. Phys. B, 2020, 29(1): 017302.
[14] Uniformity principle of temperature difference field in heat transfer optimization
Xue-Tao Cheng(程雪涛), Xin-Gang Liang(梁新刚). Chin. Phys. B, 2019, 28(6): 064402.
[15] Insight into band alignment of Zn(O,S)/CZTSe solar cell by simulation
Zhen-Wu Jiang(姜振武), Shou-Shuai Gao(高守帅), Si-Yu Wang(王思宇), Dong-Xiao Wang(王东潇), Peng Gao(高鹏), Qiang Sun(孙强), Zhi-Qiang Zhou(周志强), Wei Liu(刘玮), Yun Sun(孙云), Yi Zhang(张毅). Chin. Phys. B, 2019, 28(4): 048801.
No Suggested Reading articles found!