Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 010501    DOI: 10.1088/1674-1056/010501
GENERAL Prev   Next  

Painlevé property, local and nonlocal symmetries, and symmetry reductions for a (2+1)-dimensional integrable KdV equation

Xiao-Bo Wang(王晓波), Man Jia(贾曼), and Sen-Yue Lou(楼森岳)
School of Physical Science and Technology, Ningbo University, Ningbo\/ 315211, China
Abstract  The Painlevé property for a (2+1)-dimensional Korteweg-de Vries (KdV) extension, the combined KP3 (Kadomtsev-Petviashvili) and KP4 (cKP3-4), is proved by using Kruskal's simplification. The truncated Painlevé expansion is used to find the Schwartz form, the B\"acklund/Levi transformations, and the residual nonlocal symmetry. The residual symmetry is localized to find its finite B\"acklund transformation. The local point symmetries of the model constitute a centerless Kac-Moody-Virasoro algebra. The local point symmetries are used to find the related group-invariant reductions including a new Lax integrable model with a fourth-order spectral problem. The finite transformation theorem or the Lie point symmetry group is obtained by using a direct method.
Keywords:  Painlevé      property      residual symmetry      Schwartz form      B\"acklund transforms      D'Alembert waves      symmetry reductions      Kac-Moody-Virasoro algebra      (2+1)-dimensional KdV equation  
Revised:  30 July 2020      Accepted manuscript online: 
PACS:  05.45.Yv (Solitons)  
  02.30.Ik (Integrable systems)  
  47.20.Ky (Nonlinearity, bifurcation, and symmetry breaking)  
  52.35.Mw (Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11975131 and 11435005) and the K C Wong Magna Fund in Ningbo University.\vglue2pt
Corresponding Authors:  Corresponding author. E-mail: lousenyue@nbu.edu.cn   

Cite this article: 

Xiao-Bo Wang(王晓波), Man Jia(贾曼), and Sen-Yue Lou(楼森岳) Painlevé property, local and nonlocal symmetries, and symmetry reductions for a (2+1)-dimensional integrable KdV equation 2021 Chin. Phys. B 30 010501

1 Lou S Y 1056/ab9699 2020 Chin. Phys. B 29 080502 DOI: http://dx.doi.org/10.1088/1674-
2 Crighton D G1995 Appl. Math. 39 39
3 Kadomtsev B B and Petviashvili V I1970 Sov. Phys. Dokl. 15 539
4 Nizhnik L P1980 Sov. Phys. Dokl. 25 706
5 Veselov A P and Novikov S P1984 Sov. Math. Dokl. 30 588
6 Novikov S P and Veselov A P 2789(86)90187- 9 1986 Physica D 18 267 DOI: http://dx.doi.org/10.1016/0167-
7 Lou S Y and Hu X B 1997 J. Math. Phys. 38 6401 DOI: http://dx.doi.org/10.1063/1.532219
8 Lou S Y and Ruan H Y 4470/35/2/310 2001 J. Phys. A: Math. Gen. 35 305 DOI: http://dx.doi.org/10.1088/0305-
9 Boiti M, Leon J J P, Manna M and Pempinelli F 5611/2/3/005 1986 Inverse Problems 2 271 DOI: http://dx.doi.org/10.1088/0266-
10 Ito M 1990 J. Phys. Soc. Jpn. 49 771 DOI: http://dx.doi.org/10.1143/JPSJ.49.771
11 Lou S Y 6528/ab833e 2020 J. Phys. Commun. 4 041002 DOI: http://dx.doi.org/10.1088/2399-
12 Xu D H and Lou S Y 2020 Acta Phys. Sin. 69 014208 (in Chinese) DOI: http://dx.doi.org/10.7498/aps.69.20191347
13 Yan Z W and Lou S Y 2020 Appl. Math. Lett. 104 106271 DOI: http://dx.doi.org/10.1016/j.aml.2020.106271
14 Weiss J, Tabor M and Carnevale G 1983 J. Math. Phys. 24 522 DOI: http://dx.doi.org/10.1063/1.525721
15 Conte R 9601(89)90072- 8 1989 Phys. Lett. A 140 383 DOI: http://dx.doi.org/10.1016/0375-
16 Lou S Y 1998- 0523 1998 Z. Naturforsch A 53 251 DOI: http://dx.doi.org/10.1515/zna-
17 Gao X N, Lou S Y and Tang X Y2013 J. High Energy Phys. 5 029
18 Li Y Q, Chen J C, Chen Y and Lou S Y 307X/31/1/010201 2014 Chin. Phys. Lett. 31 010201 DOI: http://dx.doi.org/10.1088/0256-
19 Liu S J, Tang X Y and Lou S Y 1056/27/6/060201 2018 Chin. Phys. B 27 060201 DOI: http://dx.doi.org/10.1088/1674-
20 Lou S Y, Hu X R and Chen Y 8113/45/15/155209 2012 J. Phys. A: Math. Theor. 45 155209 DOI: http://dx.doi.org/10.1088/1751-
21 Cheng X P, Chen C L and Lou S Y 2014 Wave Motion 51 1298 DOI: http://dx.doi.org/10.1016/j.wavemoti.2014.07.012
22 Lou S Y 1993 Phys. Rev. Lett. 71 4099 DOI: http://dx.doi.org/10.1103/PhysRevLett.71.4099
23 Lou S Y 4470/26/17/043 1993 J. Phys. A: Math. Gen. 26 4387 DOI: http://dx.doi.org/10.1088/0305-
24 David D, Kamran N, Levi D and Winternitz P 1986 J. Math. Phys. 27 1225 DOI: http://dx.doi.org/10.1063/1.527129
25 Lou S Y, Rogers C and Schief W K 2003 J. Math. Phys. 44 5869 DOI: http://dx.doi.org/10.1063/1.1625077
26 Lou S Y and Tang X Y 2004 J. Math. Phys. 45 1020 DOI: http://dx.doi.org/10.1063/1.1645651
27 Lou S Y and Ma H C2005 J. Phys.A: Math. Gen. 38 L129
28 Lou S Y and Ma H C 2006 Chaos, Solitons and Fractals 30 804 DOI: http://dx.doi.org/10.1016/j.chaos.2005.04.090
[1] Ghost imaging based on the control of light source bandwidth
Zhao-Qi Liu(刘兆骐), Yan-Feng Bai(白艳锋), Xuan-Peng-Fan Zou(邹璇彭凡), Li-Yu Zhou(周立宇), Qin Fu(付芹), and Xi-Quan Fu(傅喜泉). Chin. Phys. B, 2023, 32(3): 034210.
[2] Wideband frequency-dependent dielectric properties of rat tissues exposed to low-intensity focused ultrasound in the microwave frequency range
Xue Wang(王雪), Shi-Xie Jiang, Lin Huang(黄林), Zi-Hui Chi(迟子惠), Dan Wu(吴丹), and Hua-Bei Jiang. Chin. Phys. B, 2023, 32(3): 034305.
[3] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[4] Computational studies on magnetism and ferroelectricity
Ke Xu(徐可), Junsheng Feng(冯俊生), and Hongjun Xiang(向红军). Chin. Phys. B, 2022, 31(9): 097505.
[5] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[6] Surface defects, stress evolution, and laser damage enhancement mechanism of fused silica under oxygen-enriched condition
Wei-Yuan Luo(罗韦媛), Wen-Feng Sun(孙文丰), Bo Li(黎波), Xia Xiang(向霞), Xiao-Long Jiang(蒋晓龙),Wei Liao(廖威), Hai-Jun Wang(王海军), Xiao-Dong Yuan(袁晓东),Xiao-Dong Jiang(蒋晓东), and Xiao-Tao Zu(祖小涛). Chin. Phys. B, 2022, 31(5): 054214.
[7] Evolution of optical properties and molecular structure of PCBM films under proton irradiation
Guo-Dong Xiong(熊国栋), Hui-Ping Zhu(朱慧平), Lei Wang(王磊), Bo Li(李博), Fa-Zhan Zhao(赵发展), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2022, 31(5): 057102.
[8] Residual symmetries, consistent-Riccati-expansion integrability, and interaction solutions of a new (3+1)-dimensional generalized Kadomtsev—Petviashvili equation
Jian-Wen Wu(吴剑文), Yue-Jin Cai(蔡跃进), and Ji Lin(林机). Chin. Phys. B, 2022, 31(3): 030201.
[9] Improved thermal property of strained InGaAlAs/AlGaAs quantum wells for 808-nm vertical cavity surface emitting lasers
Zhuang-Zhuang Zhao(赵壮壮), Meng Xun(荀孟), Guan-Zhong Pan(潘冠中), Yun Sun(孙昀), Jing-Tao Zhou(周静涛), and De-Xin Wu(吴德馨). Chin. Phys. B, 2022, 31(3): 034208.
[10] Theoretical study of novel B-C-O compoundswith non-diamond isoelectronic
Chao Liu(刘超) and Pan Ying(应盼). Chin. Phys. B, 2022, 31(2): 026201.
[11] Magnetic properties and magnetocaloric effects of Tm1-xErxCuAl (x = 0.25, 0.5, and 0.75) compounds
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(12): 127501.
[12] AA-stacked borophene-graphene bilayer as an anode material for alkali-metal ion batteries with a superhigh capacity
Yi-Bo Liang(梁艺博), Zhao Liu(刘钊), Jing Wang(王静), and Ying Liu(刘英). Chin. Phys. B, 2022, 31(11): 116302.
[13] Magnetic properties and magnetocaloric effect in RE55Co30Al10Si5 (RE = Er and Tm) amorphous ribbons
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(11): 117503.
[14] Vertical WS2 spin valve with Ohmic property based on Fe3GeTe2 electrodes
Ce Hu(胡策), Faguang Yan(闫法光), Yucai Li(李予才), and Kaiyou Wang(王开友). Chin. Phys. B, 2021, 30(9): 097505.
[15] Magnetic and electronic properties of two-dimensional metal-organic frameworks TM3(C2NH)12
Zhen Feng(冯振), Yi Li(李依), Yaqiang Ma(马亚强), Yipeng An(安义鹏), and Xianqi Dai(戴宪起). Chin. Phys. B, 2021, 30(9): 097102.
No Suggested Reading articles found!