1 State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; 2 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China; 3 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract We propose a metal organic vapor phase epitaxy (MOVPE) method of pre-introducing TMIn during the growth of u-GaN to improve the subsequent growth of InGaN and discuss the impact of this method in detail. Monitoring the MOVPE by the interference curve generated by the laser incident on the film surface, we found that this method avoided the problem of the excessive InGaN growth rate. Further x-ray diffraction (XRD), photoluminescence (PL), and atomic force microscope (AFM) tests showed that the quality of InGaN is improved. It is inferred that by introducing TMIn in advance, the indium atom can replace the gallium atom in the reactor walls, delivery pipes, and other corners. Hence the auto-incorporation of gallium can be reduced when InGaN is grown, so as to improve the material quality.
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2016YFB0400803 and 2016YFB0401801) and the National Natural Science Foundation of China (Grant Nos. 61674138, 61674139, 61604145, 61574135, and 61574134).
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.