INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Vertical polarization-induced doping InN/InGaN heterojunction tunnel FET with hetero T-shaped gate |
Yuan-Hao He(何元浩), Wei Mao(毛维)‡, Ming Du(杜鸣), Zi-Ling Peng(彭紫玲), Hai-Yong Wang(王海永), Xue-Feng Zheng(郑雪峰), Chong Wang(王冲), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃) |
Key Laboratory of Ministry of Education for Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China |
|
|
Abstract A novel vertical InN/InGaN heterojunction tunnel FET with hetero T-shaped gate as well as polarization-doped source and drain region (InN-Hetero-TG-TFET) is proposed and investigated by Silvaco-Atlas simulations for the first time. Compared with the conventional physical doping TFET devices, the proposed device can realize the P-type source and N-type drain region by means of the polarization effect near the top InN/InGaN and bottom InGaN/InN heterojunctions respectively, which could provide an effective solution of random dopant fluctuation (RDF) and the related problems about the high thermal budget and expensive annealing techniques due to ion-implantation physical doping. Besides, due to the hetero T-shaped gate, the improvement of the on-state performance can be achieved in the proposed device. The simulations of the device proposed here in this work show ION of 4.45×10-5 A/μm, ION/IOFF ratio of 1013, and SSavg of 7.5 mV/dec in InN-Hetero-TG-TFET, which are better than the counterparts of the device with a homo T-shaped gate (InN-Homo-TG-TFET) and our reported lateral polarization-induced InN-based TFET (PI-InN-TFET). These results can provide useful reference for further developing the TFETs without physical doping process in low power electronics applications.
|
Received: 21 August 2020
Revised: 18 November 2020
Accepted manuscript online: 30 December 2020
|
PACS:
|
85.30.De
|
(Semiconductor-device characterization, design, and modeling)
|
|
85.30.Tv
|
(Field effect devices)
|
|
85.30.Mn
|
(Junction breakdown and tunneling devices (including resonance tunneling devices))
|
|
Fund: Project supported by the Key Research and Development Program of Shaanxi Province, China (Grant No. 2020ZDLGY03-05) and the National Natural Science Foundation of China (Grant No. 61574112). |
Corresponding Authors:
Wei Mao
E-mail: mwxidian@126.com
|
Cite this article:
Yuan-Hao He(何元浩), Wei Mao(毛维), Ming Du(杜鸣), Zi-Ling Peng(彭紫玲), Hai-Yong Wang(王海永), Xue-Feng Zheng(郑雪峰), Chong Wang(王冲), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃) Vertical polarization-induced doping InN/InGaN heterojunction tunnel FET with hetero T-shaped gate 2021 Chin. Phys. B 30 058501
|
[1] Ionescu A M and Riel H 2011 Nature 479 329 [2] Seabaugh A and Zhang Q 2010 Proc. IEEE 98 2095 [3] Zhang S L, Liang R R, Wang J, Tan Z and Xu J 2017 Chin. Phys. B 26 018504 [4] Li C, Yan Z R, Zhuang Y R, Zhao X L and Guo J M 2018 Chin. Phys. B 27 078502 [5] Ionescu A M, De Michielis L, Dagtekin N, Salvatore G, Cao J, Rusu A and Bartsch S 2011 IEEE International Electron Devices Meeting (Iedm), December 5-7, 2011, Washington, DC, USA, p. 16.1.1 [6] Choi W Y, Park B G, Lee J D and Liu T J K 2007 IEEE Electron Dev. Lett. 28 743 [7] Ghosh B and Akram M W 2013 IEEE Electron Dev. Lett. 34 584 [8] Vijayvargiya V and Vishvakarma S K 2014 IEEE Trans. Nanotechnol. 13 974 [9] Chiang M H, Lin J N, Kim K and Chuang C T 2007 IEEE Trans. Electron Dev. 54 2055 [10] Damrongplasit N, Shin C, Kim S H, Vega R A and Liu T J K 2011 IEEE Trans. Electron Dev. 58 3541 [11] Damrongplasit N, Kim S H and Liu T J K 2013 IEEE Electron Dev. Lett. 34 184 [12] Leung G and Chui C O 2013 IEEE Trans. Electron Dev. 60 84 [13] Kumar M J and Janardhanan S 2013 IEEE Trans. Electron Dev. 60 3285 [14] Hueting R J E, Rajasekharan B, Salm C and Schmitz J 2008 IEEE Electron Dev. Lett. 29 1367 [15] Tirkey S, Sharma D, Raad B R and Yadav D S 2018 IEEE Trans. Electron Dev. 65 282 [16] Duan X L, Zhang J C, Wang S L, Li Y, Xu S R and Hao Y 2018 IEEE Trans. Electron Dev. 65 1223 [17] Li W J, Sharmin S, Ilatikhameneh H, Rahman R, Lu Y Q, Wang J S, Yan X D, Seabaugh A, Klimeck G, Jena D and Fay P 2015 IEEE J. Explor. Solid-State Computat. Devices Circuits 1 28 [18] Li W J, Cao L N, Lund C, Keller S and Fay P 2016 Phys. Status Solidi A 213 905 [19] Simon J, Zhang Z, Goodman K, Xing H L, Kosel T, Fay P and Jena D 2009 Phys. Rev. Lett. 103 026801 [20] Krishnamoorthy S, Nath D N, Akyol F, Park P S, Esposto M and Rajan S 2010 Appl. Phys. Lett. 97 203502 [21] Chaney A, Turski H, Nomoto K, Wang Q X, Hu Z Y, Kim M, Xing H G and Jena D 2018 76th Device Research Conference (DRC), June 24-27, 2018, Santa Barbara, USA, pp. 1-3 [22] Mao W, Peng Z L, Yang C, Wang H Y, Du M, Wang X F, Zheng X F, Wang C, Zhang J C and Hao Y 2019 Semicond. Sci. Technol. 34 065015 [23] Ilatikhameneh H, Ameen T A, Klimeck G, Appenzeller J and Rahman R 2015 IEEE Electron Dev. Lett. 36 1097 [24] Yang Z N 2016 IEEE Electron Dev. Lett. 37 839 [25] Lin J T, Wang T C, Lee W H, Yeh C T, Glass S and Zhao Q T 2018 IEEE Trans. Electron Dev. 65 769 [26] Krishnamohan T, Kim D, Raghunathan S and Saraswat K 2008 IEEE International Electron Devices Meeting (IEDM), December 15-17, 2008, San Francisco, CA, USA, pp. 1-3 [27] Saurabh S and Kumar M J 2011 IEEE Trans. Electron Dev. 58 404 [28] Seabaugh A, Fathipour S, Li W J, Lu H, Park J H, Kummel A C, Jena D, Fullerton-Shirey S K and Fay P 2015 IEEE International Electron Devices Meeting (IEDM), December 7-9, 2015, Washington, DC, USA, p. 35.6.1 [29] Chang H Y, Adams B, Chien P Y, Li J P and Woo J C S 2013 IEEE Trans. Electron Dev. 60 92 [30] Wang P F, Hilsenbeck K, Nirschl T, Oswald M, Stepper C, Weis M, Schmitt-Landsiedel D and Hansch W 2004 Solid State Electron. 48 2281 [31] Mao W, He Y H, Yang C, Wang H Y, Du M, Zheng X F, Wang X F, Wang C, Zhang J C and Hao Y 2020 Semicond. Sci. Technol. 35 075012 [32] Ghosh K and Singisetti U 2014 IEEE Trans. Electron Dev. 61 3405 [33] Vurgaftman I, Meyer J R and Ram-Mohan L R 2001 J. Appl. Phys. 89 5815 [34] Wang T, Wang X Q, Chen Z Y, Sun X X, Wang P, Zheng X T, Rong X, Yang L Y, Guo W W, Wang D, Cheng J P, Lin X, Li P, Li J, He X, Zhang Q, Li M, Zhang J, Yang X L, Xu F J, Ge W K, Zhang X X and Shen B 2018 Adv. Sci. 5 1800844 [35] Ameen T A, Ilatikhameneh H, Fay P, Seabaugh A, Rahman R and Klimeck G 2019 IEEE Trans. Electron Dev. 66 736 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|