Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(5): 058501    DOI: 10.1088/1674-1056/abd73f
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Vertical polarization-induced doping InN/InGaN heterojunction tunnel FET with hetero T-shaped gate

Yuan-Hao He(何元浩), Wei Mao(毛维), Ming Du(杜鸣), Zi-Ling Peng(彭紫玲), Hai-Yong Wang(王海永), Xue-Feng Zheng(郑雪峰), Chong Wang(王冲), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃)
Key Laboratory of Ministry of Education for Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China
Abstract  A novel vertical InN/InGaN heterojunction tunnel FET with hetero T-shaped gate as well as polarization-doped source and drain region (InN-Hetero-TG-TFET) is proposed and investigated by Silvaco-Atlas simulations for the first time. Compared with the conventional physical doping TFET devices, the proposed device can realize the P-type source and N-type drain region by means of the polarization effect near the top InN/InGaN and bottom InGaN/InN heterojunctions respectively, which could provide an effective solution of random dopant fluctuation (RDF) and the related problems about the high thermal budget and expensive annealing techniques due to ion-implantation physical doping. Besides, due to the hetero T-shaped gate, the improvement of the on-state performance can be achieved in the proposed device. The simulations of the device proposed here in this work show ION of 4.45×10-5 A/μm, ION/IOFF ratio of 1013, and SSavg of 7.5 mV/dec in InN-Hetero-TG-TFET, which are better than the counterparts of the device with a homo T-shaped gate (InN-Homo-TG-TFET) and our reported lateral polarization-induced InN-based TFET (PI-InN-TFET). These results can provide useful reference for further developing the TFETs without physical doping process in low power electronics applications.
Keywords:  InGaN TFET      hetero T-shaped gate      polarization-doped source and drain  
Received:  21 August 2020      Revised:  18 November 2020      Accepted manuscript online:  30 December 2020
PACS:  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.30.Tv (Field effect devices)  
  85.30.Mn (Junction breakdown and tunneling devices (including resonance tunneling devices))  
Fund: Project supported by the Key Research and Development Program of Shaanxi Province, China (Grant No. 2020ZDLGY03-05) and the National Natural Science Foundation of China (Grant No. 61574112).
Corresponding Authors:  Wei Mao     E-mail:  mwxidian@126.com

Cite this article: 

Yuan-Hao He(何元浩), Wei Mao(毛维), Ming Du(杜鸣), Zi-Ling Peng(彭紫玲), Hai-Yong Wang(王海永), Xue-Feng Zheng(郑雪峰), Chong Wang(王冲), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃) Vertical polarization-induced doping InN/InGaN heterojunction tunnel FET with hetero T-shaped gate 2021 Chin. Phys. B 30 058501

[1] Ionescu A M and Riel H 2011 Nature 479 329
[2] Seabaugh A and Zhang Q 2010 Proc. IEEE 98 2095
[3] Zhang S L, Liang R R, Wang J, Tan Z and Xu J 2017 Chin. Phys. B 26 018504
[4] Li C, Yan Z R, Zhuang Y R, Zhao X L and Guo J M 2018 Chin. Phys. B 27 078502
[5] Ionescu A M, De Michielis L, Dagtekin N, Salvatore G, Cao J, Rusu A and Bartsch S 2011 IEEE International Electron Devices Meeting (Iedm), December 5-7, 2011, Washington, DC, USA, p. 16.1.1
[6] Choi W Y, Park B G, Lee J D and Liu T J K 2007 IEEE Electron Dev. Lett. 28 743
[7] Ghosh B and Akram M W 2013 IEEE Electron Dev. Lett. 34 584
[8] Vijayvargiya V and Vishvakarma S K 2014 IEEE Trans. Nanotechnol. 13 974
[9] Chiang M H, Lin J N, Kim K and Chuang C T 2007 IEEE Trans. Electron Dev. 54 2055
[10] Damrongplasit N, Shin C, Kim S H, Vega R A and Liu T J K 2011 IEEE Trans. Electron Dev. 58 3541
[11] Damrongplasit N, Kim S H and Liu T J K 2013 IEEE Electron Dev. Lett. 34 184
[12] Leung G and Chui C O 2013 IEEE Trans. Electron Dev. 60 84
[13] Kumar M J and Janardhanan S 2013 IEEE Trans. Electron Dev. 60 3285
[14] Hueting R J E, Rajasekharan B, Salm C and Schmitz J 2008 IEEE Electron Dev. Lett. 29 1367
[15] Tirkey S, Sharma D, Raad B R and Yadav D S 2018 IEEE Trans. Electron Dev. 65 282
[16] Duan X L, Zhang J C, Wang S L, Li Y, Xu S R and Hao Y 2018 IEEE Trans. Electron Dev. 65 1223
[17] Li W J, Sharmin S, Ilatikhameneh H, Rahman R, Lu Y Q, Wang J S, Yan X D, Seabaugh A, Klimeck G, Jena D and Fay P 2015 IEEE J. Explor. Solid-State Computat. Devices Circuits 1 28
[18] Li W J, Cao L N, Lund C, Keller S and Fay P 2016 Phys. Status Solidi A 213 905
[19] Simon J, Zhang Z, Goodman K, Xing H L, Kosel T, Fay P and Jena D 2009 Phys. Rev. Lett. 103 026801
[20] Krishnamoorthy S, Nath D N, Akyol F, Park P S, Esposto M and Rajan S 2010 Appl. Phys. Lett. 97 203502
[21] Chaney A, Turski H, Nomoto K, Wang Q X, Hu Z Y, Kim M, Xing H G and Jena D 2018 76th Device Research Conference (DRC), June 24-27, 2018, Santa Barbara, USA, pp. 1-3
[22] Mao W, Peng Z L, Yang C, Wang H Y, Du M, Wang X F, Zheng X F, Wang C, Zhang J C and Hao Y 2019 Semicond. Sci. Technol. 34 065015
[23] Ilatikhameneh H, Ameen T A, Klimeck G, Appenzeller J and Rahman R 2015 IEEE Electron Dev. Lett. 36 1097
[24] Yang Z N 2016 IEEE Electron Dev. Lett. 37 839
[25] Lin J T, Wang T C, Lee W H, Yeh C T, Glass S and Zhao Q T 2018 IEEE Trans. Electron Dev. 65 769
[26] Krishnamohan T, Kim D, Raghunathan S and Saraswat K 2008 IEEE International Electron Devices Meeting (IEDM), December 15-17, 2008, San Francisco, CA, USA, pp. 1-3
[27] Saurabh S and Kumar M J 2011 IEEE Trans. Electron Dev. 58 404
[28] Seabaugh A, Fathipour S, Li W J, Lu H, Park J H, Kummel A C, Jena D, Fullerton-Shirey S K and Fay P 2015 IEEE International Electron Devices Meeting (IEDM), December 7-9, 2015, Washington, DC, USA, p. 35.6.1
[29] Chang H Y, Adams B, Chien P Y, Li J P and Woo J C S 2013 IEEE Trans. Electron Dev. 60 92
[30] Wang P F, Hilsenbeck K, Nirschl T, Oswald M, Stepper C, Weis M, Schmitt-Landsiedel D and Hansch W 2004 Solid State Electron. 48 2281
[31] Mao W, He Y H, Yang C, Wang H Y, Du M, Zheng X F, Wang X F, Wang C, Zhang J C and Hao Y 2020 Semicond. Sci. Technol. 35 075012
[32] Ghosh K and Singisetti U 2014 IEEE Trans. Electron Dev. 61 3405
[33] Vurgaftman I, Meyer J R and Ram-Mohan L R 2001 J. Appl. Phys. 89 5815
[34] Wang T, Wang X Q, Chen Z Y, Sun X X, Wang P, Zheng X T, Rong X, Yang L Y, Guo W W, Wang D, Cheng J P, Lin X, Li P, Li J, He X, Zhang Q, Li M, Zhang J, Yang X L, Xu F J, Ge W K, Zhang X X and Shen B 2018 Adv. Sci. 5 1800844
[35] Ameen T A, Ilatikhameneh H, Fay P, Seabaugh A, Rahman R and Klimeck G 2019 IEEE Trans. Electron Dev. 66 736
[1] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[2] High performance carrier stored trench bipolar transistor with dual shielding structure
Jin-Ping Zhang(张金平), Hao-Nan Deng(邓浩楠), Rong-Rong Zhu(朱镕镕), Ze-Hong Li(李泽宏), and Bo Zhang(张波). Chin. Phys. B, 2023, 32(3): 038501.
[3] Enhancement of holding voltage by a modified low-voltage trigger silicon-controlled rectifier structure for electrostatic discharge protection
Yuankang Chen(陈远康), Yuanliang Zhou(周远良), Jie Jiang(蒋杰), Tingke Rao(饶庭柯), Wugang Liao(廖武刚), and Junjie Liu(刘俊杰). Chin. Phys. B, 2023, 32(2): 028502.
[4] High performance SiC trench-type MOSFET with an integrated MOS-channel diode
Jie Wei(魏杰), Qinfeng Jiang(姜钦峰), Xiaorong Luo(罗小蓉), Junyue Huang(黄俊岳), Kemeng Yang(杨可萌), Zhen Ma(马臻), Jian Fang(方健), and Fei Yang(杨霏). Chin. Phys. B, 2023, 32(2): 028503.
[5] Demonstration and modeling of unipolar-carrier-conduction GaN Schottky-pn junction diode with low turn-on voltage
Lijian Guo(郭力健), Weizong Xu(徐尉宗), Qi Wei(位祺), Xinghua Liu(刘兴华), Tianyi Li(李天义), Dong Zhou(周东), Fangfang Ren(任芳芳), Dunjun Chen(陈敦军), Rong Zhang(张荣), Youdou Zheng(郑有炓), and Hai Lu(陆海). Chin. Phys. B, 2023, 32(2): 027302.
[6] A polarization mismatched p-GaN/p-Al0.25Ga0.75N/p-GaN structure to improve the hole injection for GaN based micro-LED with secondary etched mesa
Yidan Zhang(张一丹), Chunshuang Chu(楚春双), Sheng Hang(杭升), Yonghui Zhang(张勇辉),Quan Zheng(郑权), Qing Li(李青), Wengang Bi(毕文刚), and Zihui Zhang(张紫辉). Chin. Phys. B, 2023, 32(1): 018509.
[7] Dynamic modeling of total ionizing dose-induced threshold voltage shifts in MOS devices
Guangbao Lu(陆广宝), Jun Liu(刘俊), Chuanguo Zhang(张传国), Yang Gao(高扬), and Yonggang Li(李永钢). Chin. Phys. B, 2023, 32(1): 018506.
[8] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[9] Normally-off AlGaN/GaN heterojunction field-effect transistors with in-situ AlN gate insulator
Taofei Pu(蒲涛飞), Shuqiang Liu(刘树强), Xiaobo Li(李小波), Ting-Ting Wang(王婷婷), Jiyao Du(都继瑶), Liuan Li(李柳暗), Liang He(何亮), Xinke Liu(刘新科), and Jin-Ping Ao(敖金平). Chin. Phys. B, 2022, 31(12): 127701.
[10] Ozone oxidation of 4H-SiC and flat-band voltage stability of SiC MOS capacitors
Zhi-Peng Yin(尹志鹏), Sheng-Sheng Wei(尉升升), Jiao Bai(白娇), Wei-Wei Xie(谢威威), Zhao-Hui Liu(刘兆慧), Fu-Wen Qin(秦福文), and De-Jun Wang(王德君). Chin. Phys. B, 2022, 31(11): 117302.
[11] Degradation and breakdown behaviors of SGTs under repetitive unclamped inductive switching avalanche stress
Chenkai Zhu(朱晨凯), Linna Zhao(赵琳娜), Zhuo Yang(杨卓), and Xiaofeng Gu(顾晓峰). Chin. Phys. B, 2022, 31(9): 097303.
[12] Improvement on short-circuit ability of SiC super-junction MOSFET with partially widened pillar structure
Xinxin Zuo(左欣欣), Jiang Lu(陆江), Xiaoli Tian(田晓丽), Yun Bai(白云), Guodong Cheng(成国栋), Hong Chen(陈宏), Yidan Tang(汤益丹), Chengyue Yang(杨成樾), and Xinyu Liu(刘新宇). Chin. Phys. B, 2022, 31(9): 098502.
[13] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[14] Simulation design of normally-off AlGaN/GaN high-electron-mobility transistors with p-GaN Schottky hybrid gate
Yun-Long He(何云龙), Fang Zhang(张方), Kai Liu(刘凯), Yue-Hua Hong(洪悦华), Xue-Feng Zheng(郑雪峰),Chong Wang(王冲), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068501.
[15] Combined effects of cycling endurance and total ionizing dose on floating gate memory cells
Si-De Song(宋思德), Guo-Zhu Liu(刘国柱), Qi He(贺琪), Xiang Gu(顾祥), Gen-Shen Hong(洪根深), and Jian-Wei Wu(吴建伟). Chin. Phys. B, 2022, 31(5): 056107.
No Suggested Reading articles found!