Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(8): 087802    DOI: 10.1088/1674-1056/28/8/087802
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Monolithic semi-polar (1101) InGaN/GaN near white light-emitting diodes on micro-striped Si (100) substrate

Qi Wang(王琦)1,2, Guo-Dong Yuan(袁国栋)1,2, Wen-Qiang Liu(刘文强)1,2, Shuai Zhao(赵帅)1,2, Lu Zhang(张璐)1,2, Zhi-Qiang Liu(刘志强)1,2, Jun-Xi Wang(王军喜)1,2, Jin-Min Li(李晋闽)1,2
1 Center for Semiconductor Lighting, Institute of Semiconductors, Chinese Academy of Sciences, State Key Laboratory of Solid State Lighting, Beijing Engineering Research Center for the 3rd Generation Semiconductor Materials and Application, Beijing 100083, China;
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

The epitaxial growth of novel GaN-based light-emitting diode (LED) on Si (100) substrate has proved challenging. Here in this work, we investigate a monolithic phosphor-free semi-polar InGaN/GaN near white light-emitting diode, which is formed on a micro-striped Si (100) substrate by metal organic chemical vapor deposition. By controlling the size of micro-stripe, InGaN/GaN multiple quantum wells (MQWs) with different well widths are grown on semi-polar (1101) planes. Besides, indium-rich quantum dots are observed in InGaN wells by transmission electron microscopy, which is caused by indium phase separation. Due to the different widths of MQWs and indium phase separation, the indium content changes from the center to the side of the micro-stripe. Various indium content provides the wideband emission. This unique property allows the semipolar InGaN/GaN MQWs to emit wideband light, leading to the near white light emission.

Keywords:  InGaN/GaN MQWs      near white light-emitting diodes      Si (100) substrate  
Received:  20 March 2019      Revised:  14 June 2019      Accepted manuscript online: 
PACS:  78.66.Fd (III-V semiconductors)  
  78.66.Bz (Metals and metallic alloys)  
  78.67.De (Quantum wells)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 51472229, 61422405, and 11574301), the Natural Science Foundation of Tianjin (Grant No. 14JCQNJC01000), and the National Science Foundation for Post-doctoral Scientists of China (Grant No. 2016M600231).

Corresponding Authors:  Guo-Dong Yuan     E-mail:  gdyuan@semi.ac.cn

Cite this article: 

Qi Wang(王琦), Guo-Dong Yuan(袁国栋), Wen-Qiang Liu(刘文强), Shuai Zhao(赵帅), Lu Zhang(张璐), Zhi-Qiang Liu(刘志强), Jun-Xi Wang(王军喜), Jin-Min Li(李晋闽) Monolithic semi-polar (1101) InGaN/GaN near white light-emitting diodes on micro-striped Si (100) substrate 2019 Chin. Phys. B 28 087802

[37] Maki K, Yoshio H and Hiroshi A 2016 Jpn. J. Appl. Phys. 55 05FA10
[1] Liu T T, Zhang K, Zhu G R, Zhou J J, Kong Y C, Yu X X and Chen T S 2018 Chin. Phys. B 27 047307
[38] Zhao Z Y, Zhang X D, Wang F Y, Jiang Y J, Du J, Gao H B, Zhao Y and Liu C C 2014 Acta Phys. Sin. 63 136802 (in Chinese)
[2] Zhang H P, Zhang Q, Lin M, Lü W F, Zhang Z H, Bai J L, He J, Wang B and Wang D J 2018 J. Semicond. 39 074004
[39] Long H, Yang W, Ying L Y and Zhang B P 2017 Chin. Phys. B 26 054211
[3] Li J M, Guo W, Sheikhi M, Li H W, Bo B X and Ye J C 2018 J. Semicond. 39 053003
[40] Zhang L, Yuan G D, Wang Q, Wang K C, Wu R W, Liu Z Q, Li J M and Wang J X 2017 Optoelectron. Lett. 13 45
[4] Wang C, Wang X, Zheng X F, Wang Y, He Y L, Tian Y, He Q, Wu J, Mao W, Ma X H, Zhang J C and Hao Y 2018 Chin. Phys. B 27 097308
[41] Reuters B, Strate J, Hahn H, Finken M, Wille A, Heuken M, Kalisch H and Vescan A 2014 J. Cryst. Growth 391 33
[5] Chen L, Payne J, Strate J, Li C, Zhang J M, Yu W J, Di Z F and Wang X 2015 Chin. Phys. B 24 118102
[42] Lee L, Chien K F, Chou W C, Ko C H, Wu C H, Lin Y R, Wan C T, Wann C H, Hsu C W, Chen Y F and Su Y K 2012 CrystEngComm 14 4486
[6] Chichibua S F, Abarea A C, Mack M P, Keller S, DenBaars S P and Nakamura S 1999 Mat. Sci. Eng. B-Struct. B59 298
[43] Wang X H, Jia H Q, Guo L W, Xing Z G, Wang Y, Pei X J, Zhou J M and Chen H 2007 Appl. Phys. Lett. 91 161912
[7] Li Y, Jiang Y, Die J, Wang C, Yan S, Ma Z, Wu H, Wang L, Jia H, Wang W and Chen H 2017 Chin. Phys. B 26 087311
[44] Yasutoshi Kawaguchi, Massaya Shimizu and Yamaguchi M 1998 J. Cryst. Growth 189/190 24
[45] Li H J, Li P P, Kang J J, Li Z, Li Z C, Li J, Yi X Y and Wang G H 2013 Appl. Phys. Express 6 102103
[8] Li X, Zhao D G, Jiang D S, Yang J, Chen P, Liu Z S, Zhu J J, Liu W, He X G, Li X J, Liang F, Liu J P, Zhang L Q, Yang H, Zhang Y T, Du G T, Long H and Mo L 2017 Chin. Phys. B 26 017805
[46] Kowsz S J, Pynn C D, Oh S H, Farrell R M, DenBaars S P and Nakamura S 2016 J. Appl. Phys. 120 033102
[9] Schimpke T, Mandl M, Stoll I, Pohl-Klein B, Bichler D, Zwaschka F, Strube-Knyrim J, Huckenbeck B, Max B, Muller M, Veit P, Bertram F, Christen J, Hartmann J, Waag A, Lugauer H J and Strassburg M 2016 Phys. Status Solidi A 213 1577
[10] Li F, You L, Nie C, Zhang Q, Jin X, Li H, Gu X, Huang Y and Li Q 2017 Opt. Express 25 21901
[11] Mikulics M, Arango Y C, Winden A, Adam R, Hardtdegen A, Grützmacher D, Plinski E, Gregušová D, Novák J, Kordoš P, Moonshiram A, Marso M, Sofer Z, Lüth H and Hardtdegen H 2016 Appl. Phys. Lett. 108 061107
[12] Wang L, Yang D, Hao Z B and Luo Y 2015 Chin. Phys. B 24 067303
[13] Ming-hui C, Qing W, Jian W, Xian H, Xue-yan L, De-zhen S and Da-peng J 2009 Chin. J. Lumin. 30 77
[14] Ko Y H, Kim J H, Jin L H, Ko S M, Kwon B J, Kim J, Kim T and Cho Y H 2011 Adv. Mater. 23 5364
[15] Zúñiga Pérez J, Consonni V, Lymperakis L, Kong X, Trampert A, Fernández Garrido S, Brandt O, Renevier H, Keller S, Hestroffer K, Wagner M R, Reparaz J S, Akyol F, Rajan S, Rennesson S, Palacios T and Feuillet G 2016 Appl. Phys. Rev. 3 041303
[16] Wang Q, Ji Z W, Zhou Y F, Wang X L, Liu B L, Xu X G, Gao X G and Leng J C 2017 Appl. Surf. Sci. 410 196
[17] Nakajima Y, Lin Y T and Dapkus P D 2016 Phys. Status Solidi A 213 2452
[18] Ko Y H, Song J, Leung B, Han J and Cho Y H 2015 Sci. Rep. 4 5514
[19] Guo W, Banerjee A, Bhattacharya P and Ooi B S 2011 Appl. Phys. Lett. 98 193102
[20] Wu K, Wei T B, Zheng H Y, Lan D, Wei X C, Hu Q, Lu H X, Wang J X, Luo Y and Li J M 2014 J. Appl. Phys. 115 123101
[21] Ramaiah K S, Huang G D, Reshchikov M A, Yun F and orkoc H 2003 J. Mater. Sci.-Mater. El. 14 233
[22] Kowsz S J, Pynn C D, Oh S H, Farrell R M, Speck J S, DenBaars S P and Nakamura S 2015 Appl. Phys. Lett. 107 101104
[23] Northrup J E 2009 Appl. Phys. Lett. 95 133107
[24] Monavarian M, Rashidi A and Feezell D 2018 Physica Status Solidi a 1800628
[25] Durniak M T, Bross A S, David E, Anabil C and Christian W 2016 Adv. Eectron. Mater. 2 1500327
[26] Wernicke T, Schade L, Netzel C, Rass J, Hoffmann V, Ploch S, Knauer A, Weyers M, Schwarz U and Kneissl M 2012 Semicond. Sci. Tech. 27 024014
[27] Zhao S Y, Liu X K, Pi X D and Yang D R 2018 J. Semicond. 39 061008
[28] Liu B, Zhang S, Yin J Y, Zhang X W, Dun S B, Feng Z H and Cai S J 2013 Chin. Phys. B 22 057105
[29] Li Z C, Feng B, Deng B, Liu L G, Huang Y N, Feng M X, Zhou Y, Zhao H M, Sun Q, Wang H B, Yang X L and Yang H 2018 J. Semicond. 39 044002
[30] Wei M, Wang X, Pan X, Xiao H, Wang C, Yang C and Wang Z 2011 J. Mater. Sci.-Mater. El. 22 1028
[31] Zhao D M and Zhao D G 2018 J. Semicond. 39 033006
[32] Tao X X, Mo C L, Liu J L, Zhang J L, Wang X L, Wu X M, Xu L Q, Ding J, Wang G X and Jiang F Y 2018 Chin. Phys. Lett. 35 057303
[33] Khoury M, Vennégués P, Leroux M, Delaye V, Feuillet G and Zúñiga-P érez J 2016 J. Phys. D: Appl. Phys. 49 475104
[34] Liu J M, Zhang J, Lin W Y, Ye M X, Feng X X, Zhang D Y, Steve D, Xu C K and Liu B L 2015 Chin. Phys. B 24 057801
[35] Reuters B, Strate J, Wille A, Marx M, Lükens G, Heuken L, Heuken M, Kalisch H and Vescan A 2015 J. Phys. D Appl. Phys. 48 485103
[36] Ansah Antwi K K, Soh C B, Wee Q, Tan R J N, Yang P, Tan H R, Sun L F, Shen Z X and Chua S J 2013 J. Appl. Phys. 114 243512
[37] Maki K, Yoshio H and Hiroshi A 2016 Jpn. J. Appl. Phys. 55 05FA10
[38] Zhao Z Y, Zhang X D, Wang F Y, Jiang Y J, Du J, Gao H B, Zhao Y and Liu C C 2014 Acta Phys. Sin. 63 136802 (in Chinese)
[39] Long H, Yang W, Ying L Y and Zhang B P 2017 Chin. Phys. B 26 054211
[40] Zhang L, Yuan G D, Wang Q, Wang K C, Wu R W, Liu Z Q, Li J M and Wang J X 2017 Optoelectron. Lett. 13 45
[41] Reuters B, Strate J, Hahn H, Finken M, Wille A, Heuken M, Kalisch H and Vescan A 2014 J. Cryst. Growth 391 33
[42] Lee L, Chien K F, Chou W C, Ko C H, Wu C H, Lin Y R, Wan C T, Wann C H, Hsu C W, Chen Y F and Su Y K 2012 CrystEngComm 14 4486
[43] Wang X H, Jia H Q, Guo L W, Xing Z G, Wang Y, Pei X J, Zhou J M and Chen H 2007 Appl. Phys. Lett. 91 161912
[44] Yasutoshi Kawaguchi, Massaya Shimizu and Yamaguchi M 1998 J. Cryst. Growth 189/190 24
[45] Li H J, Li P P, Kang J J, Li Z, Li Z C, Li J, Yi X Y and Wang G H 2013 Appl. Phys. Express 6 102103
[46] Kowsz S J, Pynn C D, Oh S H, Farrell R M, DenBaars S P and Nakamura S 2016 J. Appl. Phys. 120 033102
[1] Lattice damage in InGaN induced by swift heavy ion irradiation
Ning Liu(刘宁), Li-Min Zhang(张利民), Xue-Ting Liu(刘雪婷), Shuo Zhang(张硕), Tie-Shan Wang(王铁山), and Hong-Xia Guo(郭红霞). Chin. Phys. B, 2022, 31(10): 106103.
[2] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[3] Efficiency droop in InGaN/GaN-based LEDs with a gradually varying In composition in each InGaN well layer
Shang-Da Qu(屈尚达), Ming-Sheng Xu(徐明升), Cheng-Xin Wang(王成新), Kai-Ju Shi(时凯居), Rui Li(李睿), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2022, 31(1): 017801.
[4] Dual-wavelength ultraviolet photodetector based on vertical (Al,Ga)N nanowires and graphene
Min Zhou(周敏), Yukun Zhao(赵宇坤), Lifeng Bian(边历峰), Jianya Zhang(张建亚), Wenxian Yang(杨文献), Yuanyuan Wu(吴渊渊), Zhiwei Xing(邢志伟), Min Jiang(蒋敏), and Shulong Lu(陆书龙). Chin. Phys. B, 2021, 30(7): 078506.
[5] Optical polarization characteristics for AlGaN-based light-emitting diodes with AlGaN multilayer structure as well layer
Lu Xue(薛露), Yi Li(李毅), Mei Ge(葛梅), Mei-Yu Wang(王美玉), and You-Hua Zhu(朱友华). Chin. Phys. B, 2021, 30(4): 047802.
[6] Combined effects of carrier scattering and Coulomb screening on photoluminescence in InGaN/GaN quantum well structure with high In content
Rui Li(李睿), Ming-Sheng Xu(徐明升), Peng Wang(汪鹏), Cheng-Xin Wang(王成新), Shang-Da Qu(屈尚达), Kai-Ju Shi(时凯居), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2021, 30(4): 047801.
[7] Effect of Sb composition on the band alignment of InAs/GaAsSb quantum dots
Guangze Lu(陆光泽), Zunren Lv(吕尊仁), Zhongkai Zhang(张中恺), Xiaoguang Yang(杨晓光), and Tao Yang(杨涛). Chin. Phys. B, 2021, 30(1): 017802.
[8] Photoluminescence of green InGaN/GaN MQWs grown on pre-wells
Shou-Qiang Lai(赖寿强), Qing-Xuan Li(李青璇), Hao Long(龙浩), Jin-Zhao Wu(吴瑾照), Lei-Ying Ying(应磊莹), Zhi-Wei Zheng(郑志威), Zhi-Ren Qiu(丘志仁), and Bao-Ping Zhang(张保平). Chin. Phys. B, 2020, 29(12): 127802.
[9] Improvement of TE-polarized emission in type-Ⅱ InAlN-AlGaN/AlGaN quantum well
Yi Li(李毅), Youhua Zhu(朱友华), Meiyu Wang(王美玉), Honghai Deng(邓洪海), Haihong Yin(尹海宏). Chin. Phys. B, 2019, 28(9): 097801.
[10] Progress in quantum well and quantum cascade infrared photodetectors in SITP
Xiaohao Zhou(周孝好), Ning Li(李宁), Wei Lu(陆卫). Chin. Phys. B, 2019, 28(2): 027801.
[11] Performance improvement of InGaN/GaN multiple quantum well visible-light photodiodes by optimizing TEGa flow
Bin Li(黎斌), Shan-Jin Huang(黄善津), Hai-Long Wang(王海龙), Hua-Long Wu(吴华龙), Zhi-Sheng Wu(吴志盛), Gang Wang(王钢), Hao Jiang(江灏). Chin. Phys. B, 2017, 26(8): 087307.
[12] Analysis of localization effect in blue-violet light emitting InGaN/GaN multiple quantum wells with different well widths
Xiang Li(李翔), De-Gang Zhao(赵德刚), De-Sheng Jiang(江德生), Jing Yang(杨静), Ping Chen(陈平), Zong-Shun Liu(刘宗顺), Jian-Jun Zhu(朱建军), Wei Liu(刘炜), Xiao-Guang He(何晓光), Xiao-Jing Li(李晓静), Feng Liang(梁锋), Jian-Ping Liu(刘建平), Li-Qun Zhang(张立群), Hui Yang(杨辉), Yuan-Tao Zhang(张源涛), Guo-Tong Du(杜国同), Heng Long(龙衡), Mo Li(李沫). Chin. Phys. B, 2017, 26(1): 017805.
[13] Effects of multiple interruptions with trimethylindium-treatment in the InGaN/GaN quantum well on green light emitting diodes
Liang Qiao(乔良), Zi-Guang Ma(马紫光), Hong Chen(陈弘), Hai-Yan Wu(吴海燕), Xue-Fang Chen(陈雪芳), Hao-Jun Yang(杨浩军), Bin Zhao(赵斌), Miao He(何苗), Shu-Wen Zheng(郑树文), Shu-Ti Li(李述体). Chin. Phys. B, 2016, 25(10): 107803.
[14] Exciton-phonon interaction in Al0.4Ga0.6N/Al0.53Ga0.47N multiple quantum wells
Ya-Li Liu(刘雅丽), Peng Jin(金鹏), Gui-Peng Liu(刘贵鹏), Wei-Ying Wang(王维颖), Zhi-Qiang Qi(齐志强), Chang-Qing Chen(陈长清), Zhan-Guo Wang(王占国). Chin. Phys. B, 2016, 25(8): 087801.
[15] Variation of efficiency droop with quantum well thickness in InGaN/GaN green light-emitting diode
Liu Wei (刘炜), Zhao De-Gang (赵德刚), Jiang De-Sheng (江德生), Chen Ping (陈平), Liu Zong-Shun (刘宗顺), Zhu Jian-Jun (朱建军), Li Xiang (李翔), Liang Feng (梁锋), Liu Jian-Ping (刘建平), Yang Hui (杨辉). Chin. Phys. B, 2015, 24(12): 127801.
No Suggested Reading articles found!