CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Monolithic semi-polar (1101) InGaN/GaN near white light-emitting diodes on micro-striped Si (100) substrate |
Qi Wang(王琦)1,2, Guo-Dong Yuan(袁国栋)1,2, Wen-Qiang Liu(刘文强)1,2, Shuai Zhao(赵帅)1,2, Lu Zhang(张璐)1,2, Zhi-Qiang Liu(刘志强)1,2, Jun-Xi Wang(王军喜)1,2, Jin-Min Li(李晋闽)1,2 |
1 Center for Semiconductor Lighting, Institute of Semiconductors, Chinese Academy of Sciences, State Key Laboratory of Solid State Lighting, Beijing Engineering Research Center for the 3rd Generation Semiconductor Materials and Application, Beijing 100083, China;
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract The epitaxial growth of novel GaN-based light-emitting diode (LED) on Si (100) substrate has proved challenging. Here in this work, we investigate a monolithic phosphor-free semi-polar InGaN/GaN near white light-emitting diode, which is formed on a micro-striped Si (100) substrate by metal organic chemical vapor deposition. By controlling the size of micro-stripe, InGaN/GaN multiple quantum wells (MQWs) with different well widths are grown on semi-polar (1101) planes. Besides, indium-rich quantum dots are observed in InGaN wells by transmission electron microscopy, which is caused by indium phase separation. Due to the different widths of MQWs and indium phase separation, the indium content changes from the center to the side of the micro-stripe. Various indium content provides the wideband emission. This unique property allows the semipolar InGaN/GaN MQWs to emit wideband light, leading to the near white light emission.
|
Received: 20 March 2019
Revised: 14 June 2019
Accepted manuscript online:
|
PACS:
|
78.66.Fd
|
(III-V semiconductors)
|
|
78.66.Bz
|
(Metals and metallic alloys)
|
|
78.67.De
|
(Quantum wells)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51472229, 61422405, and 11574301), the Natural Science Foundation of Tianjin (Grant No. 14JCQNJC01000), and the National Science Foundation for Post-doctoral Scientists of China (Grant No. 2016M600231). |
Corresponding Authors:
Guo-Dong Yuan
E-mail: gdyuan@semi.ac.cn
|
Cite this article:
Qi Wang(王琦), Guo-Dong Yuan(袁国栋), Wen-Qiang Liu(刘文强), Shuai Zhao(赵帅), Lu Zhang(张璐), Zhi-Qiang Liu(刘志强), Jun-Xi Wang(王军喜), Jin-Min Li(李晋闽) Monolithic semi-polar (1101) InGaN/GaN near white light-emitting diodes on micro-striped Si (100) substrate 2019 Chin. Phys. B 28 087802
|
[37] |
Maki K, Yoshio H and Hiroshi A 2016 Jpn. J. Appl. Phys. 55 05FA10
|
[1] |
Liu T T, Zhang K, Zhu G R, Zhou J J, Kong Y C, Yu X X and Chen T S 2018 Chin. Phys. B 27 047307
|
[38] |
Zhao Z Y, Zhang X D, Wang F Y, Jiang Y J, Du J, Gao H B, Zhao Y and Liu C C 2014 Acta Phys. Sin. 63 136802 (in Chinese)
|
[2] |
Zhang H P, Zhang Q, Lin M, Lü W F, Zhang Z H, Bai J L, He J, Wang B and Wang D J 2018 J. Semicond. 39 074004
|
[39] |
Long H, Yang W, Ying L Y and Zhang B P 2017 Chin. Phys. B 26 054211
|
[3] |
Li J M, Guo W, Sheikhi M, Li H W, Bo B X and Ye J C 2018 J. Semicond. 39 053003
|
[40] |
Zhang L, Yuan G D, Wang Q, Wang K C, Wu R W, Liu Z Q, Li J M and Wang J X 2017 Optoelectron. Lett. 13 45
|
[4] |
Wang C, Wang X, Zheng X F, Wang Y, He Y L, Tian Y, He Q, Wu J, Mao W, Ma X H, Zhang J C and Hao Y 2018 Chin. Phys. B 27 097308
|
[41] |
Reuters B, Strate J, Hahn H, Finken M, Wille A, Heuken M, Kalisch H and Vescan A 2014 J. Cryst. Growth 391 33
|
[5] |
Chen L, Payne J, Strate J, Li C, Zhang J M, Yu W J, Di Z F and Wang X 2015 Chin. Phys. B 24 118102
|
[42] |
Lee L, Chien K F, Chou W C, Ko C H, Wu C H, Lin Y R, Wan C T, Wann C H, Hsu C W, Chen Y F and Su Y K 2012 CrystEngComm 14 4486
|
[6] |
Chichibua S F, Abarea A C, Mack M P, Keller S, DenBaars S P and Nakamura S 1999 Mat. Sci. Eng. B-Struct. B59 298
|
[43] |
Wang X H, Jia H Q, Guo L W, Xing Z G, Wang Y, Pei X J, Zhou J M and Chen H 2007 Appl. Phys. Lett. 91 161912
|
[7] |
Li Y, Jiang Y, Die J, Wang C, Yan S, Ma Z, Wu H, Wang L, Jia H, Wang W and Chen H 2017 Chin. Phys. B 26 087311
|
[44] |
Yasutoshi Kawaguchi, Massaya Shimizu and Yamaguchi M 1998 J. Cryst. Growth 189/190 24
|
[45] |
Li H J, Li P P, Kang J J, Li Z, Li Z C, Li J, Yi X Y and Wang G H 2013 Appl. Phys. Express 6 102103
|
[8] |
Li X, Zhao D G, Jiang D S, Yang J, Chen P, Liu Z S, Zhu J J, Liu W, He X G, Li X J, Liang F, Liu J P, Zhang L Q, Yang H, Zhang Y T, Du G T, Long H and Mo L 2017 Chin. Phys. B 26 017805
|
[46] |
Kowsz S J, Pynn C D, Oh S H, Farrell R M, DenBaars S P and Nakamura S 2016 J. Appl. Phys. 120 033102
|
[9] |
Schimpke T, Mandl M, Stoll I, Pohl-Klein B, Bichler D, Zwaschka F, Strube-Knyrim J, Huckenbeck B, Max B, Muller M, Veit P, Bertram F, Christen J, Hartmann J, Waag A, Lugauer H J and Strassburg M 2016 Phys. Status Solidi A 213 1577
|
[10] |
Li F, You L, Nie C, Zhang Q, Jin X, Li H, Gu X, Huang Y and Li Q 2017 Opt. Express 25 21901
|
[11] |
Mikulics M, Arango Y C, Winden A, Adam R, Hardtdegen A, Grützmacher D, Plinski E, Gregušová D, Novák J, Kordoš P, Moonshiram A, Marso M, Sofer Z, Lüth H and Hardtdegen H 2016 Appl. Phys. Lett. 108 061107
|
[12] |
Wang L, Yang D, Hao Z B and Luo Y 2015 Chin. Phys. B 24 067303
|
[13] |
Ming-hui C, Qing W, Jian W, Xian H, Xue-yan L, De-zhen S and Da-peng J 2009 Chin. J. Lumin. 30 77
|
[14] |
Ko Y H, Kim J H, Jin L H, Ko S M, Kwon B J, Kim J, Kim T and Cho Y H 2011 Adv. Mater. 23 5364
|
[15] |
Zúñiga Pérez J, Consonni V, Lymperakis L, Kong X, Trampert A, Fernández Garrido S, Brandt O, Renevier H, Keller S, Hestroffer K, Wagner M R, Reparaz J S, Akyol F, Rajan S, Rennesson S, Palacios T and Feuillet G 2016 Appl. Phys. Rev. 3 041303
|
[16] |
Wang Q, Ji Z W, Zhou Y F, Wang X L, Liu B L, Xu X G, Gao X G and Leng J C 2017 Appl. Surf. Sci. 410 196
|
[17] |
Nakajima Y, Lin Y T and Dapkus P D 2016 Phys. Status Solidi A 213 2452
|
[18] |
Ko Y H, Song J, Leung B, Han J and Cho Y H 2015 Sci. Rep. 4 5514
|
[19] |
Guo W, Banerjee A, Bhattacharya P and Ooi B S 2011 Appl. Phys. Lett. 98 193102
|
[20] |
Wu K, Wei T B, Zheng H Y, Lan D, Wei X C, Hu Q, Lu H X, Wang J X, Luo Y and Li J M 2014 J. Appl. Phys. 115 123101
|
[21] |
Ramaiah K S, Huang G D, Reshchikov M A, Yun F and orkoc H 2003 J. Mater. Sci.-Mater. El. 14 233
|
[22] |
Kowsz S J, Pynn C D, Oh S H, Farrell R M, Speck J S, DenBaars S P and Nakamura S 2015 Appl. Phys. Lett. 107 101104
|
[23] |
Northrup J E 2009 Appl. Phys. Lett. 95 133107
|
[24] |
Monavarian M, Rashidi A and Feezell D 2018 Physica Status Solidi a 1800628
|
[25] |
Durniak M T, Bross A S, David E, Anabil C and Christian W 2016 Adv. Eectron. Mater. 2 1500327
|
[26] |
Wernicke T, Schade L, Netzel C, Rass J, Hoffmann V, Ploch S, Knauer A, Weyers M, Schwarz U and Kneissl M 2012 Semicond. Sci. Tech. 27 024014
|
[27] |
Zhao S Y, Liu X K, Pi X D and Yang D R 2018 J. Semicond. 39 061008
|
[28] |
Liu B, Zhang S, Yin J Y, Zhang X W, Dun S B, Feng Z H and Cai S J 2013 Chin. Phys. B 22 057105
|
[29] |
Li Z C, Feng B, Deng B, Liu L G, Huang Y N, Feng M X, Zhou Y, Zhao H M, Sun Q, Wang H B, Yang X L and Yang H 2018 J. Semicond. 39 044002
|
[30] |
Wei M, Wang X, Pan X, Xiao H, Wang C, Yang C and Wang Z 2011 J. Mater. Sci.-Mater. El. 22 1028
|
[31] |
Zhao D M and Zhao D G 2018 J. Semicond. 39 033006
|
[32] |
Tao X X, Mo C L, Liu J L, Zhang J L, Wang X L, Wu X M, Xu L Q, Ding J, Wang G X and Jiang F Y 2018 Chin. Phys. Lett. 35 057303
|
[33] |
Khoury M, Vennégués P, Leroux M, Delaye V, Feuillet G and Zúñiga-P érez J 2016 J. Phys. D: Appl. Phys. 49 475104
|
[34] |
Liu J M, Zhang J, Lin W Y, Ye M X, Feng X X, Zhang D Y, Steve D, Xu C K and Liu B L 2015 Chin. Phys. B 24 057801
|
[35] |
Reuters B, Strate J, Wille A, Marx M, Lükens G, Heuken L, Heuken M, Kalisch H and Vescan A 2015 J. Phys. D Appl. Phys. 48 485103
|
[36] |
Ansah Antwi K K, Soh C B, Wee Q, Tan R J N, Yang P, Tan H R, Sun L F, Shen Z X and Chua S J 2013 J. Appl. Phys. 114 243512
|
[37] |
Maki K, Yoshio H and Hiroshi A 2016 Jpn. J. Appl. Phys. 55 05FA10
|
[38] |
Zhao Z Y, Zhang X D, Wang F Y, Jiang Y J, Du J, Gao H B, Zhao Y and Liu C C 2014 Acta Phys. Sin. 63 136802 (in Chinese)
|
[39] |
Long H, Yang W, Ying L Y and Zhang B P 2017 Chin. Phys. B 26 054211
|
[40] |
Zhang L, Yuan G D, Wang Q, Wang K C, Wu R W, Liu Z Q, Li J M and Wang J X 2017 Optoelectron. Lett. 13 45
|
[41] |
Reuters B, Strate J, Hahn H, Finken M, Wille A, Heuken M, Kalisch H and Vescan A 2014 J. Cryst. Growth 391 33
|
[42] |
Lee L, Chien K F, Chou W C, Ko C H, Wu C H, Lin Y R, Wan C T, Wann C H, Hsu C W, Chen Y F and Su Y K 2012 CrystEngComm 14 4486
|
[43] |
Wang X H, Jia H Q, Guo L W, Xing Z G, Wang Y, Pei X J, Zhou J M and Chen H 2007 Appl. Phys. Lett. 91 161912
|
[44] |
Yasutoshi Kawaguchi, Massaya Shimizu and Yamaguchi M 1998 J. Cryst. Growth 189/190 24
|
[45] |
Li H J, Li P P, Kang J J, Li Z, Li Z C, Li J, Yi X Y and Wang G H 2013 Appl. Phys. Express 6 102103
|
[46] |
Kowsz S J, Pynn C D, Oh S H, Farrell R M, DenBaars S P and Nakamura S 2016 J. Appl. Phys. 120 033102
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|