Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(5): 057802    DOI: 10.1088/1674-1056/28/5/057802
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Temperature and excitation dependence of stimulated emission and spontaneous emission in InGaN epilayer

Xuee An(安雪娥)1, Zhengjun Shang(商正君)1, Chuanhe Ma(马传贺)1, Xinhe Zheng(郑新和)2, Cuiling Zhang(张翠玲)3, Lin Sun(孙琳)1, Fangyu Yue(越方禹)1, Bo Li(李波)1, Ye Chen(陈晔)1
1 Key Laboratory of Polar Materials and Devices, East China Normal University, Shanghai 200241, China;
2 Department of Physics, Beijing University of Science and Technology, Beijing 100083, China;
3 Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
Abstract  

Temperature and excitation dependent photoluminescence (PL) of InGaN epilayer grown on c-plane GaN/sapphire template by molecular beam epitaxy (MBE) has been systematically investigated. The emission spectra of the sample consisted of strong multiple peaks associated with one stimulated emission (SE) located at 430 nm and two spontaneous emissions (SPE) centered at about 450 nm and 480 nm, indicating the co-existence of shallow and deep localized states. The peak energy of SE exhibiting weak s-shaped variation with increasing temperature revealed the localization effect of excitons. Moreover, an abnormal increase of the SPE intensity with increasing temperature was also observed, which indicated that the carrier transfer between the shallow and deeper localized states exists. Temperature dependent time-resolved PL (TRPL) demonstrated the carrier transfer processes among the localized states. In addition, a slow thermalization of hot carriers was observed in InGaN film by using TRPL and transient differential reflectivity, which is attributed to the phonon bottleneck effect induced by indium aggregation.

Keywords:  InGaN      stimulated emission      spontaneous emission      carrier transfer  
Received:  10 November 2018      Revised:  02 February 2019      Accepted manuscript online: 
PACS:  78.40.Fy (Semiconductors)  
  78.45.+h (Stimulated emission)  
  78.47.-p (Spectroscopy of solid state dynamics)  
  78.55.-m (Photoluminescence, properties and materials)  
Fund: 

Project supported by the National Key Research Program of China (Grant No. 2016YFB0501604) and the National Natural Science Foundation of China (Grant Nos. 10874127 and 61227902).

Corresponding Authors:  Bo Li, Ye Chen     E-mail:  bli@ee.ecnu.edu.cn;ychen@ee.ecnu.edu.cn

Cite this article: 

Xuee An(安雪娥), Zhengjun Shang(商正君), Chuanhe Ma(马传贺), Xinhe Zheng(郑新和), Cuiling Zhang(张翠玲), Lin Sun(孙琳), Fangyu Yue(越方禹), Bo Li(李波), Ye Chen(陈晔) Temperature and excitation dependence of stimulated emission and spontaneous emission in InGaN epilayer 2019 Chin. Phys. B 28 057802

[1] Chua S J, Soh C B, Liu W, Teng J H, Ang S S and Teo S L 2008 Phys. Status Solidi. c 5 2189
[2] Satake A, Masumoto Y, Miyajima T, Asatsuma T, Nakamura F and Ikeda M 1998 Phys. Rev. B 57 R2041
[3] Togtema G, Georgiev V, Georgieva D, Gergova R, Butcher K S A and Alexandrov D 2015 Solid State Electron. 103 44
[4] Guo W, Zhang M, Banerjee A and Bhattacharya P 2010 Nano Lett. 10 3355
[5] Ryu M Y, Kuokstis E, Chen C Q, Yang J Q, Simin G, Asifkhan M, Sim G G and Yu P W 2003 Solid State Commun. 126 329
[6] Narukawa Y, Kawakami Y and Fujita S 1999 Phys. Rev. B 59 10283
[7] Chichibu S, Wada K and Nakamura S 1997 Appl. Phys. Lett. 71 2346
[8] Li Z, Kang J, Wang B W, Li H J, Weng Y H, Lee Y C, Liu Z Q, Yi X Y, Feng Z C and Wang G H 2014 J. Appl. Phys. 115 083112
[9] Pozina G, Bergman J P, Monemar B, Takeuchi T, Amano H and Akasaki I 2000 J. Appl. Phys. 88 2677
[10] Kuokstis E, Yang J W, Simin G, Khan M A, Gask R and Shur M S 2002 Appl. Phys. Lett. 80 977
[11] Chichibu S, Azuhata T, Sota T and Nakamura S 1997 Appl. Phys. Lett. 70 2822
[12] Hangleiter A, Hitzel F, Netzel C, Fuhrmann D, Rossow U, Ade G and Hinze P 2005 Phys. Rev. Lett. 95 127402
[13] Yamada Y, Saito T, Kato N, Kobayashi E, Taguchi T, Kudo H and Okagawa H 2009 Phys. Rev. B 80 195202
[14] Wang Q, Gao X G, Xu Y L and Leng J C 2017 J. Alloys & Compd. 726 460
[15] Liu W, Zhao D G, Jiang D S, Chen P, Liu Z S, Zhu J J, Shi M, Zhao D M, Li X, Liu J P, Zhang S M, Wang H, Yang H, Zhang Y T and Du G T 2015 Opt. Express 23 15935
[16] Bidnyk S, Schmidt T J, Cho Y H, Gainer G H, Song J J, Keller S, Mishra U K and Denbaars S P 1998 Appl. Phys. Lett. 72 1623
[17] Mon E and Sánchez M 2005 Phys. Stat. Sol. c 2 3686
[18] You G, Guo W, Zhang C, Bhattacharya P, Henderson R and Xu 2013 J. Appl. Phys. Lett. 102 091105
[19] Binder J, Korona K P, Wysmołek A and Kaminska M 2013 J. Appl. Phys. 114 223504
[20] Shang Z J, Zheng X H, Yang C, Chen Y, Li B, Sun L, Tang Z and Zhao D G 2014 Appl. Phys. Lett. 105 23104
[21] Lam J B 2005 Optical Studies of Gallium Nitride-based Light Emitting Structures (Ph. D. Dissertation) (Oklahoma: Oklahoma State University)
[22] Kawakami Y, Narukawa Y, Omae K, Fujita S and Nakamura S 2000 Appl. Phys. Lett. 77 2151
[23] Bidnyk S, Schmidt T J, Park G H and Song J J 1997 Appl. Phys. Lett. 71 729
[24] Wang H N, Ji Z W, Qu S, Jiang Y Z, Liu B L, Xu X A and Mino H 2012 Opt. Express 20 3932
[25] Mu Q, Xu M, Wang X, Wang Q, Lv Y J, Feng Z H, Xu X G and Ji Z W 2016 Phys. E 76 1
[26] Ma J, Ji X, Wang G H, Wei X C, Lu H X, Yi X Y, Duan R F, Wang J X, Zeng Y P, Li J M, Yang F H, Wang C and Zou G 2012 Appl. Phys. Lett. 101 131101
[27] Lin T, Kuo H C, Jiang X D and Feng Z C 2017 Nanoscale Res. Lett. 12 137
[28] Lioudakis E, Othonos A, Dimakis E, Iliopoulos E and Georgakilas A 2006 Appl. Phys. Lett. 88 121128
[1] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[2] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[3] Spontaneous emission of a moving atom in a waveguide of rectangular cross section
Jing Zeng(曾静), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(2): 020302.
[4] Bottom-up approaches to microLEDs emitting red, green and blue light based on GaN nanowires and relaxed InGaN platelets
Zhaoxia Bi(毕朝霞), Anders Gustafsson, and Lars Samuelson. Chin. Phys. B, 2023, 32(1): 018103.
[5] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[6] Loss prediction of three-level amplified spontaneous emission sources in radiation environment
Shen Tan(谭深), Yan Li(李彦), Hao-Shi Zhang(张浩石), Xiao-Wei Wang(王晓伟), and Jing Jin(金靖). Chin. Phys. B, 2022, 31(6): 064211.
[7] Pump pulse characteristics of quasi-continuous-wave diode-side-pumped Nd:YAG laser
Zexin Song(宋泽鑫), Qi Bian(卞奇), Yu Shen(申玉), Keling Gong(龚柯菱), Nan Zong(宗楠), Qingshuang Zong(宗庆霜), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(5): 054208.
[8] Lattice damage in InGaN induced by swift heavy ion irradiation
Ning Liu(刘宁), Li-Min Zhang(张利民), Xue-Ting Liu(刘雪婷), Shuo Zhang(张硕), Tie-Shan Wang(王铁山), and Hong-Xia Guo(郭红霞). Chin. Phys. B, 2022, 31(10): 106103.
[9] Efficiency droop in InGaN/GaN-based LEDs with a gradually varying In composition in each InGaN well layer
Shang-Da Qu(屈尚达), Ming-Sheng Xu(徐明升), Cheng-Xin Wang(王成新), Kai-Ju Shi(时凯居), Rui Li(李睿), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2022, 31(1): 017801.
[10] Fang-Howard wave function modelling of electron mobility in AlInGaN/AlN/InGaN/GaN double heterostructures
Yao Li(李姚) and Hong-Bin Pu(蒲红斌). Chin. Phys. B, 2021, 30(9): 097201.
[11] Vertical polarization-induced doping InN/InGaN heterojunction tunnel FET with hetero T-shaped gate
Yuan-Hao He(何元浩), Wei Mao(毛维), Ming Du(杜鸣), Zi-Ling Peng(彭紫玲), Hai-Yong Wang(王海永), Xue-Feng Zheng(郑雪峰), Chong Wang(王冲), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(5): 058501.
[12] Effect of spatially nonlocal versus local optical response of a gold nanorod on modification of the spontaneous emission
Sha-Sha Wen(文莎莎), Meng Tian(田锰), Hong Yang(杨红), Su-Jun Xie(谢素君), Xiao-Yun Wang(王小云), Yun Li(李芸), Jie Liu(刘杰), Jin-Zhang Peng(彭金璋), Ke Deng(邓科), He-Ping Zhao(赵鹤平), and Yong-Gang Huang(黄勇刚). Chin. Phys. B, 2021, 30(2): 027801.
[13] A MOVPE method for improving InGaN growth quality by pre-introducing TMIn
Zi-Kun Cao(曹子坤), De-Gang Zhao(赵德刚), Jing Yang(杨静), Jian-Jun Zhu(朱建军), Feng Liang(梁锋), and Zong-Shun Liu(刘宗顺). Chin. Phys. B, 2021, 30(1): 018103.
[14] Analysis of stress-induced inhomogeneous electroluminescence in GaN-based green LEDs grown on mesh-patterned Si (111) substrates with n-type AlGaN layer
Quan-Jiang Lv(吕全江), Yi-Hong Zhang(张一鸿), Chang-Da Zheng(郑畅达), Jiang-Dong Gao(高江东), Jian-Li Zhang(张建立), Jun-Lin Liu(刘军林). Chin. Phys. B, 2020, 29(8): 087801.
[15] Dependence of limited radiative recombination rate of InGaN-based light-emitting diode on lattice temperature with high injection
Jiang-Dong Gao(高江东), Jian-Li Zhang(张建立), Zhi-Jue Quan(全知觉), Jun-Lin Liu(刘军林), Feng-Yi Jiang(江风益). Chin. Phys. B, 2020, 29(4): 047802.
No Suggested Reading articles found!