INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
A MOVPE method for improving InGaN growth quality by pre-introducing TMIn |
Zi-Kun Cao(曹子坤)1,2, De-Gang Zhao(赵德刚)1,3,†, Jing Yang(杨静)1, Jian-Jun Zhu(朱建军)1,3, Feng Liang(梁锋)1, and Zong-Shun Liu(刘宗顺)1 |
1 State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; 2 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China; 3 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract We propose a metal organic vapor phase epitaxy (MOVPE) method of pre-introducing TMIn during the growth of u-GaN to improve the subsequent growth of InGaN and discuss the impact of this method in detail. Monitoring the MOVPE by the interference curve generated by the laser incident on the film surface, we found that this method avoided the problem of the excessive InGaN growth rate. Further x-ray diffraction (XRD), photoluminescence (PL), and atomic force microscope (AFM) tests showed that the quality of InGaN is improved. It is inferred that by introducing TMIn in advance, the indium atom can replace the gallium atom in the reactor walls, delivery pipes, and other corners. Hence the auto-incorporation of gallium can be reduced when InGaN is grown, so as to improve the material quality.
|
Received: 29 July 2020
Revised: 28 August 2020
Accepted manuscript online: 14 September 2020
|
PACS:
|
81.05.Ea
|
(III-V semiconductors)
|
|
81.15.Gh
|
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
|
|
78.70.Dm
|
(X-ray absorption spectra)
|
|
78.55.-m
|
(Photoluminescence, properties and materials)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2016YFB0400803 and 2016YFB0401801) and the National Natural Science Foundation of China (Grant Nos. 61674138, 61674139, 61604145, 61574135, and 61574134). |
Corresponding Authors:
†Corresponding author. E-mail: dgzhao@red.semi.ac.cn
|
Cite this article:
Zi-Kun Cao(曹子坤), De-Gang Zhao(赵德刚), Jing Yang(杨静), Jian-Jun Zhu(朱建军), Feng Liang(梁锋), and Zong-Shun Liu(刘宗顺) A MOVPE method for improving InGaN growth quality by pre-introducing TMIn 2021 Chin. Phys. B 30 018103
|
1 Ho I H and Stringfellow G B 1996 Appl. Phys. Lett. 69 2701 2 Karpov S Y 1998 MRS Internet J. Nitride Semicond. Res. 3 16 3 Yoshimoto N, Matsuoka T, Sasaki T and Katsui A 1991 Appl. Phys. Lett. 59 2251 4 Wang D H, Xu S R, Zhang J C, Chen K, Bi Z W, Zhang L X, Meng F N, Ai S and Hao Y 2012 Journal of the Korean Physical Society 61 618 5 Taylor E, Smith M D, Sadler T C, Lorenz K, Li H N, Alves E, Parbrook P J and Martin R W 2014 J. Cryst. Growth 408 97 6 Choi S, Jin Kim H, Lochner Z, Kim J, Dupuis R D, Fischer A M, Juday R, Huang Y, Li T, Huang J Y, Ponce F A and Ryou J H 2014 J. Cryst. Growth 388 137 7 Kim J, Lochner Z, Ji M H, Choi S, Kim H J, Kim J S, Dupuis R D, Fischer A M, Juday R, Huang Y, Li T, Huang J Y, Ponce F A and Ryou J H 2014 J. Cryst. Growth 388 143 8 Zhu J J, Fan Y M, Zhang H, Lu G J, Wang H, Zhao D G, Jiang D S, Liu Z S, Zhang S M, Chen G F, Zhang B S and Yang H 2012 J. Cryst. Growth 348 25 9 Hiroki M, Oda Y, Watanabe N, Maeda N, Yokoyama H, Kumakura K and Yamamoto H 2013 J. Cryst. Growth 382 36 10 Wen F, Huang L R, Jiang B, Tong L Z, Xu W and Liu D 2010 J. Semicond. 31 094010 11 Brunner F, Hoffmann V, Knauer A, Steimetz E, Schenk T, Zettler J T and Weyers M 2007 J. Cryst. Growth 298 202 12 Zhu D, McAleese C, McLaughlin K K, Häberlen M, Salcianu C O, Thrush E J, Kappers M J, Phillips W A, Lane P, Wallis D J, Martin T, Astles M, Thoms S, Pakes A, Heuken M and Humphreys C J 2009 Light-Emitting Diodes: Materials, Devices, and Applications for Solid State Lighting XIII 7231 723118 13 Huang Y, Melton A, Jampana B, Jamil M, Ryou J H, Dupuis R D and Ferguson I T 2011 J. Appl. Phys. 110 064908 14 Tao T, Zhang Z, Liu L, Su H, Xie Z, Zhang R, Liu B, Xiu X, Li Y, Han P, Shi Y and Zheng Y2011 Journal of Semiconductors 32 14 15 Ema K, Uei R, Murakami H and Koukitu A 2019 Jpn. J. Appl. Phys. 58 1027 16 Liu Z, Nitta S, Usami S, Robin Y, Kushimoto M, Deki M, Honda Y, Pristovsek M and Amano H 2019 J. Cryst. Growth 509 50 17 Yang J, Liu S T, Wang X W, Zhao D G, Jiang D S, Chen P, Zhu J J, Liu Z S, Liang F, Liu W, Zhang L Q, Yang H, Wang W J and Li M 2018 Superlattices Microstruct. 113 34 18 Qin Z, Chen Z, Tong Y, Lu S and Zhang G 2002 Appl. Phys. A 74 655 19 Li Q and Wang G T 2010 Appl. Phys. Lett. 97 2701 20 Soto Rodriguez P E D, Gòmez V J, Kumar P, Calleja E and Nötzel R 2013 Appl. Phys. Lett. 102 131909 21 Fu S F, Chen C Y, Li F W, Hsu C H, Chou W C, Chang W H, Chen W K and Ke W C 2013 J. Cryst. Growth 383 106 22 Choi S B, Shim J P, Kim D M, Jeong H I, Jho Y D, Song Y H and Lee D S 2013 Appl. Phys. Lett. 103 033501 23 Chen Z T, Tan S X, Sakai Y and Egawa T 2009 Appl. Phys. Lett. 94 213504 24 Singh S D, Patra N, Singh M N, Mukherjee C, Jha S N, Sinha A K and Ganguli T 2018 Journal of Materials Science 54 1992 25 Althowibi F A and Ayers J E 2017 J. Electron. Mater. 47 1158 26 Lee H J, Baek S H, Na H and Lee S N 2019 Journal of the Korean Physical Society 75 362 27 Wu J, Walukiewicz W, Yu K M, Ager J W, Haller E E, Lu H and Schaff W J 2002 Appl. Phys. Lett. 80 4741 28 Schley P, Goldhahn R, Winzer A T, Gobsch G, Cimalla V, Ambacher O, Lu H, Schaff W J, Kurouchi M, Nanishi Y, Rakel M, Cobet C and Esser N 2007 Phys. Rev. B 75 205204 29 Hori M, Kano K, Yamaguchi T, Saito Y, Araki T, Nanishi Y, Teraguchi N and Suzuki A 2002 Phys. Stat. Sol. (b) 234 750 30 McCluskey M D, Van de Walle C G, Romano L T, Krusor B S and Johnson N M 2003 J. Appl. Phys. 93 4340 31 Kim H J, Na H, Kwon S Y, Seo H C, Kim H J, Shin Y, Lee K H, Kim D H, Oh H J, Yoon S, Sone C, Park Y and Yoon E 2004 J. Cryst. Growth 269 95 32 Shrestha N M, Chauhan P, Wong Y Y, Li Y, Samukawa S and Chang E Y 2020 Vacuum 171 108974 33 Vickers M E, Kappers M J, Smeeton T M, Thrush E J, Barnard J S and Humphreys C J 2003 J. Appl. Phys. 94 1565 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|