Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 018103    DOI: 10.1088/1674-1056/abb801
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

A MOVPE method for improving InGaN growth quality by pre-introducing TMIn

Zi-Kun Cao(曹子坤)1,2, De-Gang Zhao(赵德刚)1,3,†, Jing Yang(杨静)1, Jian-Jun Zhu(朱建军)1,3, Feng Liang(梁锋)1, and Zong-Shun Liu(刘宗顺)1
1 State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; 2 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China; 3 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  We propose a metal organic vapor phase epitaxy (MOVPE) method of pre-introducing TMIn during the growth of u-GaN to improve the subsequent growth of InGaN and discuss the impact of this method in detail. Monitoring the MOVPE by the interference curve generated by the laser incident on the film surface, we found that this method avoided the problem of the excessive InGaN growth rate. Further x-ray diffraction (XRD), photoluminescence (PL), and atomic force microscope (AFM) tests showed that the quality of InGaN is improved. It is inferred that by introducing TMIn in advance, the indium atom can replace the gallium atom in the reactor walls, delivery pipes, and other corners. Hence the auto-incorporation of gallium can be reduced when InGaN is grown, so as to improve the material quality.
Keywords:  InGaN      metal organic vapor phase epitaxy (MOVPE)  
Received:  29 July 2020      Revised:  28 August 2020      Accepted manuscript online:  14 September 2020
PACS:  81.05.Ea (III-V semiconductors)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  78.70.Dm (X-ray absorption spectra)  
  78.55.-m (Photoluminescence, properties and materials)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2016YFB0400803 and 2016YFB0401801) and the National Natural Science Foundation of China (Grant Nos. 61674138, 61674139, 61604145, 61574135, and 61574134).
Corresponding Authors:  Corresponding author. E-mail: dgzhao@red.semi.ac.cn   

Cite this article: 

Zi-Kun Cao(曹子坤), De-Gang Zhao(赵德刚), Jing Yang(杨静), Jian-Jun Zhu(朱建军), Feng Liang(梁锋), and Zong-Shun Liu(刘宗顺) A MOVPE method for improving InGaN growth quality by pre-introducing TMIn 2021 Chin. Phys. B 30 018103

1 Ho I H and Stringfellow G B 1996 Appl. Phys. Lett. 69 2701
2 Karpov S Y 1998 MRS Internet J. Nitride Semicond. Res. 3 16
3 Yoshimoto N, Matsuoka T, Sasaki T and Katsui A 1991 Appl. Phys. Lett. 59 2251
4 Wang D H, Xu S R, Zhang J C, Chen K, Bi Z W, Zhang L X, Meng F N, Ai S and Hao Y 2012 Journal of the Korean Physical Society 61 618
5 Taylor E, Smith M D, Sadler T C, Lorenz K, Li H N, Alves E, Parbrook P J and Martin R W 2014 J. Cryst. Growth 408 97
6 Choi S, Jin Kim H, Lochner Z, Kim J, Dupuis R D, Fischer A M, Juday R, Huang Y, Li T, Huang J Y, Ponce F A and Ryou J H 2014 J. Cryst. Growth 388 137
7 Kim J, Lochner Z, Ji M H, Choi S, Kim H J, Kim J S, Dupuis R D, Fischer A M, Juday R, Huang Y, Li T, Huang J Y, Ponce F A and Ryou J H 2014 J. Cryst. Growth 388 143
8 Zhu J J, Fan Y M, Zhang H, Lu G J, Wang H, Zhao D G, Jiang D S, Liu Z S, Zhang S M, Chen G F, Zhang B S and Yang H 2012 J. Cryst. Growth 348 25
9 Hiroki M, Oda Y, Watanabe N, Maeda N, Yokoyama H, Kumakura K and Yamamoto H 2013 J. Cryst. Growth 382 36
10 Wen F, Huang L R, Jiang B, Tong L Z, Xu W and Liu D 2010 J. Semicond. 31 094010
11 Brunner F, Hoffmann V, Knauer A, Steimetz E, Schenk T, Zettler J T and Weyers M 2007 J. Cryst. Growth 298 202
12 Zhu D, McAleese C, McLaughlin K K, Häberlen M, Salcianu C O, Thrush E J, Kappers M J, Phillips W A, Lane P, Wallis D J, Martin T, Astles M, Thoms S, Pakes A, Heuken M and Humphreys C J 2009 Light-Emitting Diodes: Materials, Devices, and Applications for Solid State Lighting XIII 7231 723118
13 Huang Y, Melton A, Jampana B, Jamil M, Ryou J H, Dupuis R D and Ferguson I T 2011 J. Appl. Phys. 110 064908
14 Tao T, Zhang Z, Liu L, Su H, Xie Z, Zhang R, Liu B, Xiu X, Li Y, Han P, Shi Y and Zheng Y2011 Journal of Semiconductors 32 14
15 Ema K, Uei R, Murakami H and Koukitu A 2019 Jpn. J. Appl. Phys. 58 1027
16 Liu Z, Nitta S, Usami S, Robin Y, Kushimoto M, Deki M, Honda Y, Pristovsek M and Amano H 2019 J. Cryst. Growth 509 50
17 Yang J, Liu S T, Wang X W, Zhao D G, Jiang D S, Chen P, Zhu J J, Liu Z S, Liang F, Liu W, Zhang L Q, Yang H, Wang W J and Li M 2018 Superlattices Microstruct. 113 34
18 Qin Z, Chen Z, Tong Y, Lu S and Zhang G 2002 Appl. Phys. A 74 655
19 Li Q and Wang G T 2010 Appl. Phys. Lett. 97 2701
20 Soto Rodriguez P E D, Gòmez V J, Kumar P, Calleja E and Nötzel R 2013 Appl. Phys. Lett. 102 131909
21 Fu S F, Chen C Y, Li F W, Hsu C H, Chou W C, Chang W H, Chen W K and Ke W C 2013 J. Cryst. Growth 383 106
22 Choi S B, Shim J P, Kim D M, Jeong H I, Jho Y D, Song Y H and Lee D S 2013 Appl. Phys. Lett. 103 033501
23 Chen Z T, Tan S X, Sakai Y and Egawa T 2009 Appl. Phys. Lett. 94 213504
24 Singh S D, Patra N, Singh M N, Mukherjee C, Jha S N, Sinha A K and Ganguli T 2018 Journal of Materials Science 54 1992
25 Althowibi F A and Ayers J E 2017 J. Electron. Mater. 47 1158
26 Lee H J, Baek S H, Na H and Lee S N 2019 Journal of the Korean Physical Society 75 362
27 Wu J, Walukiewicz W, Yu K M, Ager J W, Haller E E, Lu H and Schaff W J 2002 Appl. Phys. Lett. 80 4741
28 Schley P, Goldhahn R, Winzer A T, Gobsch G, Cimalla V, Ambacher O, Lu H, Schaff W J, Kurouchi M, Nanishi Y, Rakel M, Cobet C and Esser N 2007 Phys. Rev. B 75 205204
29 Hori M, Kano K, Yamaguchi T, Saito Y, Araki T, Nanishi Y, Teraguchi N and Suzuki A 2002 Phys. Stat. Sol. (b) 234 750
30 McCluskey M D, Van de Walle C G, Romano L T, Krusor B S and Johnson N M 2003 J. Appl. Phys. 93 4340
31 Kim H J, Na H, Kwon S Y, Seo H C, Kim H J, Shin Y, Lee K H, Kim D H, Oh H J, Yoon S, Sone C, Park Y and Yoon E 2004 J. Cryst. Growth 269 95
32 Shrestha N M, Chauhan P, Wong Y Y, Li Y, Samukawa S and Chang E Y 2020 Vacuum 171 108974
33 Vickers M E, Kappers M J, Smeeton T M, Thrush E J, Barnard J S and Humphreys C J 2003 J. Appl. Phys. 94 1565
[1] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[2] Bottom-up approaches to microLEDs emitting red, green and blue light based on GaN nanowires and relaxed InGaN platelets
Zhaoxia Bi(毕朝霞), Anders Gustafsson, and Lars Samuelson. Chin. Phys. B, 2023, 32(1): 018103.
[3] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[4] Lattice damage in InGaN induced by swift heavy ion irradiation
Ning Liu(刘宁), Li-Min Zhang(张利民), Xue-Ting Liu(刘雪婷), Shuo Zhang(张硕), Tie-Shan Wang(王铁山), and Hong-Xia Guo(郭红霞). Chin. Phys. B, 2022, 31(10): 106103.
[5] Efficiency droop in InGaN/GaN-based LEDs with a gradually varying In composition in each InGaN well layer
Shang-Da Qu(屈尚达), Ming-Sheng Xu(徐明升), Cheng-Xin Wang(王成新), Kai-Ju Shi(时凯居), Rui Li(李睿), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2022, 31(1): 017801.
[6] Fang-Howard wave function modelling of electron mobility in AlInGaN/AlN/InGaN/GaN double heterostructures
Yao Li(李姚) and Hong-Bin Pu(蒲红斌). Chin. Phys. B, 2021, 30(9): 097201.
[7] Vertical polarization-induced doping InN/InGaN heterojunction tunnel FET with hetero T-shaped gate
Yuan-Hao He(何元浩), Wei Mao(毛维), Ming Du(杜鸣), Zi-Ling Peng(彭紫玲), Hai-Yong Wang(王海永), Xue-Feng Zheng(郑雪峰), Chong Wang(王冲), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(5): 058501.
[8] Analysis of stress-induced inhomogeneous electroluminescence in GaN-based green LEDs grown on mesh-patterned Si (111) substrates with n-type AlGaN layer
Quan-Jiang Lv(吕全江), Yi-Hong Zhang(张一鸿), Chang-Da Zheng(郑畅达), Jiang-Dong Gao(高江东), Jian-Li Zhang(张建立), Jun-Lin Liu(刘军林). Chin. Phys. B, 2020, 29(8): 087801.
[9] Dependence of limited radiative recombination rate of InGaN-based light-emitting diode on lattice temperature with high injection
Jiang-Dong Gao(高江东), Jian-Li Zhang(张建立), Zhi-Jue Quan(全知觉), Jun-Lin Liu(刘军林), Feng-Yi Jiang(江风益). Chin. Phys. B, 2020, 29(4): 047802.
[10] Evaluation of polarization field in InGaN/GaN multiple quantum well structures by using electroluminescence spectra shift
Ping Chen(陈平), De-Gang Zhao(赵德刚), De-Sheng Jiang(江德生), Jing Yang(杨静), Jian-Jun Zhu(朱建军), Zong-Shun Liu(刘宗顺), Wei Liu(刘炜), Feng Liang(梁锋), Shuang-Tao Liu(刘双韬), Yao Xing(邢瑶), Li-Qun Zhang(张立群). Chin. Phys. B, 2020, 29(3): 034206.
[11] Photoluminescence of green InGaN/GaN MQWs grown on pre-wells
Shou-Qiang Lai(赖寿强), Qing-Xuan Li(李青璇), Hao Long(龙浩), Jin-Zhao Wu(吴瑾照), Lei-Ying Ying(应磊莹), Zhi-Wei Zheng(郑志威), Zhi-Ren Qiu(丘志仁), and Bao-Ping Zhang(张保平). Chin. Phys. B, 2020, 29(12): 127802.
[12] Monolithic semi-polar (1101) InGaN/GaN near white light-emitting diodes on micro-striped Si (100) substrate
Qi Wang(王琦), Guo-Dong Yuan(袁国栋), Wen-Qiang Liu(刘文强), Shuai Zhao(赵帅), Lu Zhang(张璐), Zhi-Qiang Liu(刘志强), Jun-Xi Wang(王军喜), Jin-Min Li(李晋闽). Chin. Phys. B, 2019, 28(8): 087802.
[13] Temperature and excitation dependence of stimulated emission and spontaneous emission in InGaN epilayer
Xuee An(安雪娥), Zhengjun Shang(商正君), Chuanhe Ma(马传贺), Xinhe Zheng(郑新和), Cuiling Zhang(张翠玲), Lin Sun(孙琳), Fangyu Yue(越方禹), Bo Li(李波), Ye Chen(陈晔). Chin. Phys. B, 2019, 28(5): 057802.
[14] Suppression of indium-composition fluctuations in InGaN epitaxial layers by periodically-pulsed mixture of N2 and H2 carrier gas
Hai-Long Wang(王海龙), Xiao-Han Zhang(张晓涵), Hong-Xia Wang(王红霞), Bin Li(黎斌), Chong Chen(陈冲), Yong-Xian Li(李永贤), Huan Yan(颜欢), Zhi-Sheng Wu(吴志盛), Hao Jiang(江灏). Chin. Phys. B, 2018, 27(12): 127805.
[15] Improvement of green InGaN-based LEDs efficiency using a novel quantum well structure
Yangfeng Li(李阳锋), Yang Jiang(江洋), Junhui Die(迭俊珲), Caiwei Wang(王彩玮), Shen Yan(严珅), Ziguang Ma(马紫光), Haiyan Wu(吴海燕), Lu Wang(王禄), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Hong Chen(陈弘). Chin. Phys. B, 2017, 26(8): 087311.
No Suggested Reading articles found!