Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 018102    DOI: 10.1088/1674-1056/abb30f
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Enhanced mobility of MoS2 field-effect transistors by combining defect passivation with dielectric-screening effect

Zhao Li(李钊), Jing-Ping Xu(徐静平)†, Lu Liu(刘璐), and Xin-Yuan Zhao(赵心愿)
School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract  A facile method of combining the defect engineering with the dielectric-screening effect is proposed to improve the electrical performance of MoS2 transistors. It is found that the carrier mobility of the transistor after the sulfur treatment on the MoS2 channel is greatly enhanced due to the reduction of the sulfur vacancies during vulcanization of MoS2. Furthermore, as compared to those transistors with HfO2 and SiO2 as the gate dielectric, the Al2O3-gate dielectric MoS2 FET shows a better electrical performance after the sulfur treatment, with a lowered subthreshold swing of 179.4 mV/dec, an increased on/off ratio of 2.11 × 106, and an enhanced carrier mobility of 64.74 cm2/Vs (about twice increase relative to the non-treated MoS2 transistor with SiO2 as the gate dielectric). These are mainly attributed to the fact that a suitable k-value gate dielectric can produce a dominant dielectric-screening effect overwhelming the phonon scattering, increasing the carrier mobility, while a larger k-value gate dielectric will enhance the phonon scattering to counteract the dielectric-screening effect, reducing the carrier mobility.
Keywords:  MoS2 transistor      sulfur vacancy      high-k dielectric      mobility  
Received:  30 June 2020      Revised:  19 August 2020      Accepted manuscript online:  27 August 2020
PACS:  81.65.Rv (Passivation)  
  77.22.Ch (Permittivity (dielectric function))  
  73.20.Hb (Impurity and defect levels; energy states of adsorbed species)  
  81.15.-z (Methods of deposition of films and coatings; film growth and epitaxy)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61774064, 61974048, and 61851406).
Corresponding Authors:  Corresponding author. E-mail: jpxu@hust.edu.cn   

Cite this article: 

Zhao Li(李钊), Jing-Ping Xu(徐静平), Lu Liu(刘璐), and Xin-Yuan Zhao(赵心愿) Enhanced mobility of MoS2 field-effect transistors by combining defect passivation with dielectric-screening effect 2021 Chin. Phys. B 30 018102

1 Zhang Y B, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
2 Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
3 Novoselov K S. Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
4 Yu Z, Ong Z Y, Li S L, Xu J B, Zhang G, Zhang Y W, Shi Y and Wang X R 2017 Adv. Funct. Mater. 27 1604093
5 Min S W, Lee H S, Choi H J, Park M K, Nam T, Kim H, Ryu S and Im S 2013 Nanoscale 5 548
6 Kim S, Konar A, Hwang W S, Lee J H, Lee J, Yang J, Jung C, Kim H, Yoo J B, Choi J Y, Jin Y W, Lee S Y, Jena D, Choi W and Kim K 2012 Nat. Commun. 3 1011
7 Lee H S, Min S W, Park M K, Lee Y T, Jeon P J, Kim J H, Ryu S and Im S 2012 Small 8 3111
8 Bertolazzi S, Krasnozhon D and Kis A 2013 ACS Nano 7 3246
9 Radisavljevic B, Whitwick M B and Kis A 2011 ACS Nano 5 9934
10 Wang H, Yu L, Lee Y H, Shi Y, Hsu A, Chin M L, Li L J, Dubey M, Kong J and Palacios T 2012 Nano Lett. 12 4674
11 Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A and Kis A 2013 Nat. Nanotechnol. 8 497
12 Yu Z H, Pan Y M, Shen Y T, Wang Z L, Ong Z Y, Xu T, Xin R, Pan L J, Wang B G, Sun L T, Wang J L, Zhang G, Zhang Y W, Shi Y and Wang X R 2014 Nat. Commun. 5 5290
13 Kaasbjerg K, Thygesen K S and Jacobsen K W 2012 Phys. Rev. B 85 115317
14 Radisavljevic B and Kis A 2013 Nat. Mater. 12 815
15 Ong Z Y and Fischetti M V 2013 Phys. Rev. B 88 165316
16 Qiu H, Xu T, Wang Z L, Ren W, Nan H Y, Ni Z H, Chen Q, Yuan S J, Miao F, Song F Q, Long G, Shi Y, Sun L T, Wang J L and Wang X R 2013 Nat. Commun. 4 2642
17 Ma N and Jena D2014 Phys. Rev. X 4 011043
18 Chang H Y, Yang S, Lee J, Tao L, Hwang W S, Jena D, Lu N and Akinwande D 2013 ACS Nano 7 5446
19 Li T, Wan B S, Du G, Zhang B S and Zeng Z M 2015 AIP Adv. 5 057102
20 Kang J H, Liu W and Banerjee K 2014 Appl. Phys. Lett. 104 093106
21 Benameur M M, Radisavljevic B, Heron J S, Sahoo S, Berger H and Kis A 2011 Nanotechnology 22 125706
22 Zhang Y W, Li H, Wang H M, Xie H, Liu R, Zhang S L and Qiu Z J 2016 Sci. Rep. 6 29615
23 Kappera R, Voiry D, Yalcin S E, Branch B, Gupta G, Mohite A D and Chhowalla M 2014 Nat. Mater. 13 1128
24 Jariwala D, Sangwan V K, Late D J, Johns J E, Dravid V P, Marks T J, Lauhon L J and Hersam M C 2013 Appl. Phys. Lett. 102 173107
25 Leong W S, Li Y, Luo X, Nai C T, Quek S Y and Thong J T 2015 Nanoscale 7 10823
26 Nan H Y, Wang Z L, Wang W H, Liang Z, Lu Y, Chen Q, He D W, Tan P H, Miao F, Wang X R, Wang J L and Ni Z H 2014 ACS Nano 8 5738
27 Liu H and Ye P D 2012 IEEE Electron Device Lett. 33 546
28 Lembke D and Kis A 2012 ACS Nano 6 10070
29 Konar A, Fang T and Jena D 2010 Phys. Rev. B 82 115452
[1] Mobility edges generated by the non-Hermitian flatband lattice
Tong Liu(刘通) and Shujie Cheng(成书杰). Chin. Phys. B, 2023, 32(2): 027102.
[2] Current bifurcation, reversals and multiple mobility transitions of dipole in alternating electric fields
Wei Du(杜威), Kao Jia(贾考), Zhi-Long Shi(施志龙), and Lin-Ru Nie(聂林如). Chin. Phys. B, 2023, 32(2): 020505.
[3] Simulation design of normally-off AlGaN/GaN high-electron-mobility transistors with p-GaN Schottky hybrid gate
Yun-Long He(何云龙), Fang Zhang(张方), Kai Liu(刘凯), Yue-Hua Hong(洪悦华), Xue-Feng Zheng(郑雪峰),Chong Wang(王冲), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068501.
[4] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[5] Maximum entropy mobility spectrum analysis for the type-I Weyl semimetal TaAs
Wen-Chong Li(李文充), Ling-Xiao Zhao(赵凌霄), Hai-Jun Zhao(赵海军),Gen-Fu Chen(陈根富), and Zhi-Xiang Shi(施智祥). Chin. Phys. B, 2022, 31(5): 057103.
[6] Improved device performance of recessed-gate AlGaN/GaN HEMTs by using in-situ N2O radical treatment
Xinchuang Zhang(张新创), Mei Wu(武玫), Bin Hou(侯斌), Xuerui Niu(牛雪锐), Hao Lu(芦浩), Fuchun Jia(贾富春), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 057301.
[7] Current oscillation in GaN-HEMTs with p-GaN islands buried layer for terahertz applications
Wen-Lu Yang(杨文璐), Lin-An Yang(杨林安), Fei-Xiang Shen(申飞翔), Hao Zou(邹浩), Yang Li(李杨), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 058505.
[8] Invariable mobility edge in a quasiperiodic lattice
Tong Liu(刘通), Shujie Cheng(成书杰), Rui Zhang(张锐), Rongrong Ruan(阮榕榕), and Houxun Jiang(姜厚勋). Chin. Phys. B, 2022, 31(2): 027101.
[9] Electron delocalization enhances the thermoelectric performance of misfit layer compound (Sn1-xBixS)1.2(TiS2)2
Xin Zhao(赵昕), Xuanwei Zhao(赵轩为), Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2022, 31(11): 117202.
[10] Interface modulated electron mobility enhancement in core-shell nanowires
Yan He(贺言), Hua-Kai Xu(许华慨), and Gang Ouyang(欧阳钢). Chin. Phys. B, 2022, 31(11): 110502.
[11] Heterogeneous integration of InP HEMTs on quartz wafer using BCB bonding technology
Yan-Fu Wang(王彦富), Bo Wang(王博), Rui-Ze Feng(封瑞泽), Zhi-Hang Tong(童志航), Tong Liu(刘桐), Peng Ding(丁芃), Yong-Bo Su(苏永波), Jing-Tao Zhou(周静涛), Feng Yang(杨枫), Wu-Chang Ding(丁武昌), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(1): 018502.
[12] Majorana zero modes, unconventional real-complex transition, and mobility edges in a one-dimensional non-Hermitian quasi-periodic lattice
Shujie Cheng(成书杰) and Xianlong Gao(高先龙). Chin. Phys. B, 2022, 31(1): 017401.
[13] Removal of GaN film over AlGaN with inductively coupled BCl3/Ar atomic layer etch
Jia-Le Tang(唐家乐) and Chao Liu(刘超). Chin. Phys. B, 2022, 31(1): 018101.
[14] Mobility edges and reentrant localization in one-dimensional dimerized non-Hermitian quasiperiodic lattice
Xiang-Ping Jiang(蒋相平), Yi Qiao(乔艺), and Jun-Peng Cao(曹俊鹏). Chin. Phys. B, 2021, 30(9): 097202.
[15] Fang-Howard wave function modelling of electron mobility in AlInGaN/AlN/InGaN/GaN double heterostructures
Yao Li(李姚) and Hong-Bin Pu(蒲红斌). Chin. Phys. B, 2021, 30(9): 097201.
No Suggested Reading articles found!