CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Dependence of limited radiative recombination rate of InGaN-based light-emitting diode on lattice temperature with high injection |
Jiang-Dong Gao(高江东), Jian-Li Zhang(张建立), Zhi-Jue Quan(全知觉), Jun-Lin Liu(刘军林), Feng-Yi Jiang(江风益) |
National Institute of LED on Silicon Substrate, Nanchang University, Nanchang 330096, China |
|
|
Abstract It is observed that the radiative recombination rate in InGaN-based light-emitting diode decreases with lattice temperature increasing. The effect of lattice temperature on the radiative recombination rate tends to be stable at high injection. Thus, there should be an upper limit for the radiative recombination rate in the quantum well with the carrier concentration increasing, even under the same lattice temperature. A modified and easily used ABC-model is proposed. It describes that the slope of the radiative recombination rate gradually decreases to zero, and further reaches a negative value in a small range of lattice temperature increasing. These provide a new insight into understanding the dependence of the radiative recombination rate on lattice temperature and carrier concentration in InGaN-based light-emitting diode.
|
Received: 16 January 2020
Revised: 18 February 2020
Accepted manuscript online:
|
PACS:
|
78.60.Fi
|
(Electroluminescence)
|
|
85.30.-z
|
(Semiconductor devices)
|
|
81.05.Ea
|
(III-V semiconductors)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51602141, 11674147, 61604066, 11604137, and 21405076), the National Key Research and Development Project of China (Grant Nos. 2016YFB0400600 and 2016YFB0400601), and the Key Research and Development Project of Jiangxi Province, China (Grant No. 20171BBE50052). |
Corresponding Authors:
Jian-Li Zhang
E-mail: zhangjianli@ncu.edu.cn
|
Cite this article:
Jiang-Dong Gao(高江东), Jian-Li Zhang(张建立), Zhi-Jue Quan(全知觉), Jun-Lin Liu(刘军林), Feng-Yi Jiang(江风益) Dependence of limited radiative recombination rate of InGaN-based light-emitting diode on lattice temperature with high injection 2020 Chin. Phys. B 29 047802
|
[1] |
Hall R N 1952 Phys. Rev. 87 387
|
[2] |
Shockley W and Read W T 1952 Phys. Rev. 87 835
|
[3] |
Fossum J G, Mertens R P, Lee D S and Nijs J F 1983 Solid-State Electron. 26 569
|
[4] |
David A, Young N G, Hurni C A and Craven M D 2019 Phys. Rev. Appl. 11 031001
|
[5] |
Hangleiter A and Häcker R 1990 Phys. Rev. Lett. 65 215
|
[6] |
Kerr M J and Cuevas A 2002 J. Appl. Phys. 91 2473
|
[7] |
De Santi C, Meneghini M, La Grassa M, Galler B, Zeisel R, Goano M, Dominici S, Mandurrino M, Bertazzi F, Robidas D, Meneghesso G and Zanoni E 2016 J. Appl. Phys. 119 094501
|
[8] |
Laubsch A, Sabathil M, Bergbauer W, Strassburg M, Lugauer H, Peter M, Lutgen S, Linder N, Streubel K, Hader J, Moloney J V, Pasenow B and Koch S W 2009 Physica Status Solidi C 6 S913
|
[9] |
Shim J I 2017 III-Nitride Based Light Emitting Diodes and Applications, Seong T Y et al. eds. (Singapore, Berlin, Heidelberg: Springer-Verlag) p. 163
|
[10] |
Shen Y C, Mueller G O, Watanabe S, Gardner N F, Munkholm A and Krames M R 2007 Appl. Phys. Lett. 91 141101
|
[11] |
Kioupakis E, Rinke P, Delaney K T and Van de Walle C G 2011 Appl. Phys. Lett. 98 161107
|
[12] |
Scheibenzuber W G, Schwarz U T, Sulmoni L, Dorsaz J, Carlin J F and Grandjean N 2011 J. Appl. Phys. 109 093106
|
[13] |
Shin D S, Han D P, Oh J Y and Shim J I 2012 Appl. Phys. Lett. 100 153506
|
[14] |
Shim J I, Kim H, Han D P, Shin D S and Kim K S 2014 Conference on Gallium Nitride Materials and Devices IX, February, San Francisco, California, USA, p. 1
|
[15] |
Wang L, Meng X, Song J H, Kim T S, Lim S Y, Hao Z B, Luo Y, Sun C Z, Han Y J, Xiong B, Wang J and Li H T 2017 Chin. Phys. Lett. 34 017301
|
[16] |
Wu X, Liu J, Quan Z, Xiong C, Zheng C, Zhang J, Mao Q and Jiang F 2014 Appl. Phys. Lett. 104 221101
|
[17] |
Lv Q, Liu J, Mo C, Zhang J, Wu X, Wu Q and Jiang F 2019 ACS Photon. 6 130
|
[18] |
Zhang Y, Lv Q, Zheng C, Gao J, Zhang J and Liu J 2019 Superlattices and Microstructures 136 106284
|
[19] |
Ryu H Y, Shin D S and Shim J I 2012 Appl. Phys. Lett. 100 131109
|
[20] |
Ryu H Y, Ryu G H, Choi Y H and Ma B 2017 Curr. Appl. Phys. 17 1298
|
[21] |
Smagley V A, Eliseev P G and Osinski M 1997 Conference on Physics and Simulation of Optoelectronic Devices V, February, San Jose, California, USA, p. 129
|
[22] |
David A and Grundmann M J 2010 Appl. Phys. Lett. 96 103504
|
[23] |
Shim J I, Kim H, Shin D S and Yoo H Y 2011 J. Korean Phys. Soc. 58 503
|
[24] |
Vallone M, Goano M, Bertazzi F and Ghione G 2017 J. Appl. Phys. 121 123107
|
[25] |
Dai Q, Shan Q, Cho J, Schubert E F, Crawford M H, Koleske D D, Kim M H and Park Y 2011 Appl. Phys. Lett. 98 033506
|
[26] |
Salis M, Ricci P C and Carbonaro C M 2019 Appl. Phys. B 125 37
|
[27] |
Gong Z, Jin S, Chen Y, McKendry J, Massoubre D, Watson I M, Gu E and Dawson M D 2010 J. Appl. Phys. 107 013103
|
[28] |
Huang H, Wu H, Huang C, Chen Z, Wang C, Yang Z and Wang H 2018 Physica Status Solidi (a) 215 1800484
|
[29] |
Li C C, Zhan J L, Chen Z Z, Jiao F, Chen Y F, Chen Y Y, Nie J X, Kang X N, Li S F, Wang Q, Zhang G Y and Shen B 2019 Opt. Express 27 A1146
|
[30] |
Jiang F, Zhang J, Sun Q and Quan Z 2019 Light-Emitting Diodes: Materials, Processes, Devices and Applications, Li J and Zhang G Q eds. (Cham, Switzerland: Springer International Publishing) pp. 133-170
|
[31] |
Jiang F, Zhang J, Xu L, Ding J, Wang G, Wu X, Wang X, Mo C, Quan Z, Guo X, Zheng C, Pan S and Liu J 2019 Photon. Res. 7 144
|
[32] |
Usman M, Anwar A R, Munsif M, Malik S and Islam N U 2019 Superlattices Microstruct. 135 106271
|
[33] |
David A, Grundmann M J, Kaeding J F, Gardner N F, Mihopoulos T G and Krames M R 2008 Appl. Phys. Lett. 92 053502
|
[34] |
Park J H, Kim D Y, Schubert E F, Cho J and Kim J K 2018 ACS Energy Lett. 3 655
|
[35] |
Bougrov V, Levinshtein M, Rumyantsev S and Zubrilov A 2001 Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe, Levinshtein M E, et al. eds. (New York: John Wiley & Sons) pp. 1-30
|
[36] |
Zubrilov A 2001 Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe, Levinshtein M E, et al. eds. (New York: John Wiley & Sons) pp. 49-66
|
[37] |
Delaney K T, Rinke P and Van de Walle C G 2009 Appl. Phys. Lett. 94 191109
|
[38] |
Liu W, Zhao D, Jiang D, Chen P, Liu Z, Zhu J, Li X, Liang F, Liu J, Zhang L, Yang H, Zhang Y and Du G 2016 J. Phys. D: Appl. Phys. 49 145104
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|