Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 016104    DOI: 10.1088/1674-1056/abbbf1
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Exciton emissions of CdS nanowire array fabricated on Cd foil by the solvothermal method

Yong Li(李勇)†, Peng-Fei Ji(姬鹏飞), Ya-Juan Hao(郝亚娟), Yue-Li Song(宋月丽), Feng-Qun Zhou(周丰群), and Shu-Qing Yuan(袁书卿)
Abstract  Nanowires have recently attracted more attention because of their low-dimensional structure, tunable optical and electrical properties for next-generation nanoscale optoelectronic devices. CdS nanowire array, which is (002)-orientation growth and approximately perpendicular to Cd foil substrate, has been fabricated by the solvothermal method. In the temperature-dependent photoluminescence, from short wavelength to long wavelength, four peaks can be ascribed to the emissions from the bandgap, the transition from the holes being bound to the donors or the electrons being bound to the acceptors, the transition from Cd interstitials to Cd vacancies, and the transition from S vacancies to the valence band, respectively. In the photoluminescence of 10 K, the emission originated from the bandgap appears in the form of multiple peaks. Two stronger peaks and five weaker peaks can be observed. The energy differences of the adjacent peaks are close to 38 meV, which is ascribed to the LO phonon energy of CdS. For the multiple peaks of bandgap emission, from low energy to high energy, the first, second, and third peaks are contributed to the third-order, second-order, and first-order phonon replica of the free exciton A, respectively; the fourth peak is originated from the free exciton A; the fifth peak is contributed to the first-order phonon replica of the excitons bound to neutral donors; the sixth and seventh peaks are originated from the excitons bound to neutral donors and the light polarization parallel to the c axis of hexagonal CdS, respectively.
Keywords:  CdS nanowires array      solvothermal method      photoluminescence      exciton emissions  
Received:  07 July 2020      Revised:  18 September 2020      Accepted manuscript online:  28 September 2020
PACS:  61.46.Km (Structure of nanowires and nanorods (long, free or loosely attached, quantum wires and quantum rods, but not gate-isolated embedded quantum wires))  
  78.55.-m (Photoluminescence, properties and materials)  
  78.55.Et (II-VI semiconductors)  
  81.16.Be (Chemical synthesis methods)  
Fund: Project supported by the Natural Science Foundation of Henan Province, China (Grant No. 202300410304) and Key Research Project for Science and Technology of the Education Department of Henan Province, China (Grant No. 21A140021).
Corresponding Authors:  Corresponding author. E-mail: liyong@pdsu.edu.cn   

Cite this article: 

Yong Li(李勇), Peng-Fei Ji(姬鹏飞), Ya-Juan Hao(郝亚娟), Yue-Li Song(宋月丽), Feng-Qun Zhou(周丰群), and Shu-Qing Yuan(袁书卿) Exciton emissions of CdS nanowire array fabricated on Cd foil by the solvothermal method 2021 Chin. Phys. B 30 016104

1 Lin J, Dai X, Liang X, Chen D, Zheng X, Li Y, Deng Y, Du H, Ye Y, Chen D, Lin C, Ma L, Bao Q, Zhang H, Wang L, Peng X and Jin Y 2020 Adv. Funct. Mater. 30 1907265
2 Tisdale W A, Williams K J, Timp B A, Norris D J, Aydil E S and Zhu X Y 2010 Science 328 1543
3 Schubert E F and Kim J K 2005 Science 308 1274
4 Al-Ghzaiwat M, Foti A, Nuesslein A, Halagacka L, Meot J, Labouret A, Ossikovski R, Roca i Cabarrocas P and Foldyna M 2019 Phys. Status Solidi RRL 13 1800402
5 Peng K Q and Lee S T 2011 Adv. Mater. 23 198
6 Ali S M, AlGarawi M S, Farooq W A, Atif M, Hanif A, AlMutairi M A and Shar M A 2020 Mater. Chem. Phys. 240 122243
7 Li H, Wang X, Xu J, Zhang Q, Bando Y, Golberg D, Ma Y and Zhai T 2013 Adv. Mater. 25 3017
8 Jie J, Zhang W, Bello I, Lee C S and Lee S T 2010 Nano Today 5 313
9 Vanalakar S A, Patil V L, Patil P S and Kim J H 2018 New J. Chem. 42 4232
10 Tan C S, Lu Y J, Chen C C, Liu P H, Gwo S, Guo G Y and Chen L J 2016 J. Phys. Chem. C 120 23055
11 Park J, Kim S, Sim Y, Yoon O J, Han M S, Yang H S, Kim Y Y, Jhon Y M, Kim J and Seong M J 2016 J. Alloys Compd. 659 38
12 Li Y, Gao L, Song Y L, Xue X C, Ji P F, Zhou F Q and Li X J 2015 Mater. Lett. 139 126
13 Zhang M, Wille M, Röder R, Heedt S, Huang L, Zhu Z, Geburt S, Grützmacher D, Schäpers T, Ronning C and Lu J G 2014 Nano Lett. 14 518
14 Sun L, Kim D H, Oh K H and Agarwal R 2013 Nano Lett. 13 3836
15 Guo S, Wang L, Ding C, Li J, Chai K, Li W, Xin Y, Zou B and Liu R 2020 J. Alloys Compd. 835 155330
16 Cao Y C 2011 Science 332 48
17 Li Y, Song Y L, Ji P F and Zhou F Q 2017 Nanoscale 9 5922
18 Hong K and Lee J L 2011 Electron. Mater. Lett. 7 77
19 Cao B L, Jiang Y, Wang C, Wang W H, Wang L Z, Niu M, Zhang W J, Li Y Q and Lee S T 2007 Adv. Funct. Mater. 17 1501
20 Song Y L, Ling H, Li Y, Ji P F, Zhou F Q, Sun X J, Yuan S Q and Wan M L 2016 Appl. Phys. A 122 1061
21 Xu H J and Li X J 2008 Opt. Express 16 2933
22 Li Y, Wang X B, Fan Z Q and Li X J 2014 Chin. Phys. Lett. 31 047801
23 Xu X, Zhao Y, Sie E J, Lu Y, Liu B, Ekahana S A, Ju X, Jiang Q, Wang J, Sun H, Sum T C, Huan C H A, Feng Y P and Xiong Q 2011 ACS Nano 5 3660
24 Vigil O, Riech I, Garcia-Rocha M and Zelaya-Angel O 1997 J. Vac. Sci. Technol. A 15 2282
25 Thomas D G and Hopfield J J 1962 Phys. Rev. 128 2135
26 Hu C, Zeng X, Cui J, Chen H and Lu J 2013 J. Phys. Chem. C 117 20998
27 Imada A, Ozaki S and Adachi S 2002 J. Appl. Phys. 92 1793
28 Seto S 2005 Jpn. J. Appl. Phys. 44 5913
29 Liu X, Zhang Q, Xing G, Xiong Q and Sum T C 2013 J. Phys. Chem. C 117 10716
[1] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
[2] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[3] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[4] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[5] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[6] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[7] Magnetic polaron-related optical properties in Ni(II)-doped CdS nanobelts: Implication for spin nanophotonic devices
Fu-Jian Ge(葛付建), Hui Peng(彭辉), Ye Tian(田野), Xiao-Yue Fan(范晓跃), Shuai Zhang(张帅), Xian-Xin Wu(吴宪欣), Xin-Feng Liu(刘新风), and Bing-Suo Zou(邹炳锁). Chin. Phys. B, 2022, 31(1): 017802.
[8] Pressure- and temperature-dependent luminescence from Tm3+ ions doped in GdYTaO4
Peng-Yu Zhou(周鹏宇), Xiu-Ming Dou(窦秀明), Bao-Quan Sun(孙宝权), Ren-Qin Dou(窦仁琴), Qing-Li Zhang(张庆礼), Bao Liu(刘鲍), Pu-Geng Hou(侯朴赓), Kai-Lin Chi(迟凯粼), and Kun Ding(丁琨). Chin. Phys. B, 2022, 31(1): 017101.
[9] Controllable preparation and disorder-dependent photoluminescence of morphologically different C60 microcrystals
Wen Cui(崔雯), De-Jun Li(李德军), Jin-Liang Guo(郭金良), Lang-Huan Zhao(赵琅嬛), Bing-Bing Liu(刘冰冰), and Shi-Shuai Sun(孙士帅). Chin. Phys. B, 2021, 30(8): 086101.
[10] Optical spectroscopy study of damage evolution in 6H-SiC by H$_{2}^{ + }$ implantation
Yong Wang(王勇), Qing Liao(廖庆), Ming Liu(刘茗), Peng-Fei Zheng(郑鹏飞), Xinyu Gao(高新宇), Zheng Jia(贾政), Shuai Xu(徐帅), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2021, 30(5): 056106.
[11] Combined effects of carrier scattering and Coulomb screening on photoluminescence in InGaN/GaN quantum well structure with high In content
Rui Li(李睿), Ming-Sheng Xu(徐明升), Peng Wang(汪鹏), Cheng-Xin Wang(王成新), Shang-Da Qu(屈尚达), Kai-Ju Shi(时凯居), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2021, 30(4): 047801.
[12] Microstructure, optical, and photoluminescence properties of β -Ga2O3 films prepared by pulsed laser deposition under different oxygen partial pressures
Rui-Rui Cui(崔瑞瑞), Jun Zhang(张俊), Zi-Jiang Luo(罗子江), Xiang Guo(郭祥), Zhao Ding(丁召), and Chao-Yong Deng(邓朝勇). Chin. Phys. B, 2021, 30(2): 028505.
[13] Energy transfer, luminescence properties, and thermal stability of color tunable barium pyrophosphate phosphors
Meng-Jiao Xu(徐梦姣), Su-Xia Li(李素霞), Chen-Chen Ji(季辰辰), Wan-Xia Luo(雒晚霞), Lu-Xiang Wang(王鲁香). Chin. Phys. B, 2020, 29(6): 063301.
[14] Photoluminescence of green InGaN/GaN MQWs grown on pre-wells
Shou-Qiang Lai(赖寿强), Qing-Xuan Li(李青璇), Hao Long(龙浩), Jin-Zhao Wu(吴瑾照), Lei-Ying Ying(应磊莹), Zhi-Wei Zheng(郑志威), Zhi-Ren Qiu(丘志仁), and Bao-Ping Zhang(张保平). Chin. Phys. B, 2020, 29(12): 127802.
[15] Photoluminescence changes of C70 nanotubes induced by laser irradiation
Han-Da Wang(王汉达), De-Di Liu(刘德弟)†, Yang-Yang He(何洋洋), Hong-Sheng Jia(贾洪声)‡, Ran Liu(刘然), Bo Liu(刘波), Nai-Sen Yu(于乃森), and Zhen-Yi Zhang(张振翼). Chin. Phys. B, 2020, 29(10): 104209.
No Suggested Reading articles found!