Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 016103    DOI: 10.1088/1674-1056/abc548
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

TiOx-based self-rectifying memory device for crossbar WORM memory array applications

Li-Ping Fu(傅丽萍)1,2, Xiao-Qiang Song(宋小强)1,2, Xiao-Ping Gao(高晓平)3,†, Ze-Wei Wu(吴泽伟)2, Si-Kai Chen(陈思凯)2, and Ying-Tao Li(李颖弢)1,2,
1 Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou 730000, China; 2 School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China; 3 Key Laboratory of Sensor and Sensing Technology, Gansu Province, Lanzhou 730000, China
Abstract  Resistive switching with a self-rectifying feature is one of the most effective solutions to overcome the crosstalk issue in a crossbar array. In this paper, a memory device based on Pt/TiOx/W structure with self-rectifying property is demonstrated for write-once-read-many-times (WORM) memory application. After programming, the devices exhibit excellent uniformity and keep in the low resistance state (LRS) permanently with a rectification ratio as high as 104 at 1 V. The self-rectifying resistive switching behavior can be attributed to the Ohmic contact at TiOx/W interface and the Schottky contact at Pt/TiOx interface. The results in this paper demonstrate the potential application of TiOx-based WORM memory device in crossbar arrays.
Keywords:  resistive switching memory      write-once-read-many-times (WORM)      self-rectifying      crossbar array  
Received:  02 October 2020      Revised:  26 October 2020      Accepted manuscript online:  28 October 2020
PACS:  61.72.jd (Vacancies)  
  68.60.-p (Physical properties of thin films, nonelectronic)  
  72.20.-i (Conductivity phenomena in semiconductors and insulators)  
  73.40.Rw (Metal-insulator-metal structures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61774079 and 61664001), the Science and Technology Plan of Gansu Province, China (Grant No. 20JR5RA307), and the Key Research and Development Program of Gansu Province, China (Grant No. 18YF1GA088).
Corresponding Authors:  Corresponding author. E-mail: xp.gao@gsas.ac.cn Corresponding author. E-mail: li_yt06@lzu.edu.cn   

Cite this article: 

Li-Ping Fu(傅丽萍), Xiao-Qiang Song(宋小强), Xiao-Ping Gao(高晓平), Ze-Wei Wu(吴泽伟), Si-Kai Chen(陈思凯), and Ying-Tao Li(李颖弢) TiOx-based self-rectifying memory device for crossbar WORM memory array applications 2021 Chin. Phys. B 30 016103

1 Zhao X L, Ma J, Xiao X H, Liu Q, Shao L, Chen D, Liu S, Niu J B, Zhang X M, Wang Y, Cao R R, Wang W, Di Z F, Lv H B, Long S B and Liu M 2018 Adv. Mater. 30 1705193
2 Li Y T, Long S B, Lv H B, L Q, Wang Q, Wang Y, Zhang S, Lian W T, Liu S and Liu M 2011 Chin. Phys. B 20 017305
3 Li C, Belkin D, Li Y, Yan P, Hu M, Ge N, Jiang H, Montgomery E, Lin P, Wang Z, Strachan J P, Barnell M, Wu Q, Williams R S, Yang J J and Xia Q 2018 Nat. Commun. 9 2385
4 Li Y T, Long S B, Lv H B, Liu Q, Wang W, Wang Q, Huo Z L, Wang Y, Zhang S, Liu S and Liu M 2011 IEEE Electron Device Lett. 32 363
5 Liu Q, Sun J, Lv H B, Long S B, Yin K B, Wan N, Li Y T, Sun L T and Liu M 2012 Adv. Mater. 24 1844
6 M?ller S, Perlov C, Jackson W, Taussig C and Forrest S R 2003 Nature 426 166
7 Li B X, Yin H, Xia F, Sun B, Zhang S Y, Xia Y D, Chen Y H and Huang W 2020 Adv. Electron. Mater. 6 2000109
8 Teo E Y H, Zhang C, Lim S L, Kang E T, Chan D S H and Zhu C 2009 IEEE Electron Device Lett. 30 487
9 Ahn S E, Kang B S, Kim K H, Lee M J, Lee C B, Stefanovich G, Kim C J and Park Y 2009 IEEE Electron Device Lett. 30 550
10 Ouyang J, Chu C W, Sieves D and Yang Y 2005 Appl. Phys. Lett. 86 123507
11 Tan Y P, Song Y, Teo E Y H, Ling Q D, Lim S L, Lo Patrick G, Chan D S H and Kang E T and Zhu C X 2008 J. Electrochem. Soc. 155 H17
12 Zuo Q Y, Long S B, Yang S Q, Liu Q, Shao L B, Wang Q, Zhang S, Li Y T, Wang Y and Liu M 2010 IEEE Electron Device Lett. 31 344
13 Lv H B, Li Y T, Liu Q, Long S B, Li L and Liu M 2013 IEEE Electron Device Lett. 34 229
14 Kuznetsov M V, Zhuravlev J F and Gubanov V A 1992 J. Electron. Spectrosc. 58 169
15 Hsu C C, Wang S Y, Lin Y S and Chen Y T 2019 J. Alloy. Compd. 779 609
16 Lee D S, Choi H J, Sim H J, Choi D H, Hwang H S, Lee M J, Seo S A andYoo I K 2005 IEEE Electron Device Lett. 26 719
17 Li Y T, Gong Q C and Jiang X Y 2014 Appl. Phys. Lett. 104 132105
[1] Resistive switching memory for high density storage and computing
Xiao-Xin Xu(许晓欣), Qing Luo(罗庆), Tian-Cheng Gong(龚天成), Hang-Bing Lv(吕杭炳), Qi Liu(刘琦), and Ming Liu(刘明). Chin. Phys. B, 2021, 30(5): 058702.
[2] Flexible and degradable resistive switching memory fabricated with sodium alginate
Zhuang-Zhuang Li(李壮壮), Zi-Yang Yan(严梓洋), Jia-Qi Xu(许嘉琪), Xiao-Han Zhang(张晓晗), Jing-Bo Fan(凡井波), Ya Lin(林亚), and Zhong-Qiang Wang(王中强). Chin. Phys. B, 2021, 30(4): 047302.
[3] In-memory computing to break the memory wall
Xiaohe Huang(黄晓合), Chunsen Liu(刘春森), Yu-Gang Jiang(姜育刚), Peng Zhou(周鹏). Chin. Phys. B, 2020, 29(7): 078504.
[4] Impact of variations of threshold voltage and hold voltage of threshold switching selectors in 1S1R crossbar array
Yu-Jia Li(李雨佳), Hua-Qiang Wu(吴华强), Bin Gao(高滨), Qi-Lin Hua(化麒麟), Zhao Zhang(张昭), Wan-Rong Zhang(张万荣), He Qian(钱鹤). Chin. Phys. B, 2018, 27(11): 118502.
[5] Atomic crystals resistive switching memory
Chunsen Liu(刘春森), David Wei Zhang(张卫), Peng Zhou(周鹏). Chin. Phys. B, 2017, 26(3): 033201.
[6] A novel circuit design for complementary resistive switch-based stateful logic operations
Xiao-Ping Wang(王小平), Lin Chen(陈林), Yi Shen(沈轶), Bo-Wen Xu(徐博文). Chin. Phys. B, 2016, 25(5): 058502.
[7] Fabrication of a 256-bits organic memory by soft x-ray lithography
Liu Xing-Hua(刘兴华), Lu Wen-Sheng(鲁闻生), Ji Zhuo-Yu(姬濯宇), Tu De-Yu(涂德钰),Zhu Xiao-Li(朱效立), Xie Chang-Qing(谢常青), and Liu Ming(刘明). Chin. Phys. B, 2010, 19(5): 057204.
No Suggested Reading articles found!