CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Utilizing of high-pressure high-temperature synthesis to enhance the thermoelectric properties of Zn0.98Al0.02O with excellent electrical properties |
Qi Chen(陈启)1, Xinjian Li(李欣健)1, Yao Wang(王遥)1, Lijie Chang(常立杰)1, Jian Wang(王健)1, Yuewen Zhang(张跃文)2,†, Hongan Ma(马红安)1,‡, and Xiaopeng Jia(贾晓鹏)1 |
1 State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China; 2 Key Laboratory of Material Physics of Ministry of Education, School of Physics and Microeletronics, Zhengzhou University, Zhengzhou 450052, China |
|
|
Abstract The temperature in the high-pressure high-temperature (HPHT) synthesis is optimized to enhance the thermoelectric properties of high-density ZnO ceramic, Zn0.98Al0.02O. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy show that HPHT can be utilized to control the crystal structure and relative density of the material. High pressure can be utilized to change the energy band structure of the samples via changing the lattice constant of samples, which decreases the thermal conductivity due to the formation of a multi-scale hierarchical structure and defects. The electrical conductivity of the material reaches 6× 104 S/m at 373 K, and all doped samples behave as n-type semiconductors. The highest power factor (6.42 μ W cm - 1K -2) and dimensionless figure of merit (zT=0.09) are obtained when Zn0.98Al0.02O is produced at 973 K using HPHT, which is superior to previously reported power factors for similar materials at the same temperature. Hall measurements indicate a high carrier concentration, which is the reason for the enhanced electrical performance.
|
Received: 10 September 2020
Revised: 19 October 2020
Accepted manuscript online: 27 October 2020
|
PACS:
|
62.50.-p
|
(High-pressure effects in solids and liquids)
|
|
72.15.Jf
|
(Thermoelectric and thermomagnetic effects)
|
|
72.15.Lh
|
(Relaxation times and mean free paths)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51171070) and the Project of Jilin Science and Technology Development Plan, China (Grant No. 20170101045JC). |
Corresponding Authors:
†Corresponding author. E-mail: zhangyw@zzu.edu.cn ‡Corresponding author. E-mail: maha@jlu.edu.cn
|
Cite this article:
Qi Chen(陈启), Xinjian Li(李欣健), Yao Wang(王遥), Lijie Chang(常立杰), Jian Wang(王健), Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏) Utilizing of high-pressure high-temperature synthesis to enhance the thermoelectric properties of Zn0.98Al0.02O with excellent electrical properties 2021 Chin. Phys. B 30 016202
|
1 Minnich A J, Dresselhaus M S, Ren Z F and Chen G 2009 Energy & Environ. Sci. 2 466 2 Poudel B, Hao Q, Ma Y, Lan Y, Minnich A, Yu B, Yan X, Wang D, Muto A, Vashaee D, Chen X, Liu J, Dresselhaus M S, Chen G and Ren Z 2008 Science 320 634 3 Pei Y, LaLonde A D, Heinz N A, Shi X, Iwanaga S, Wang H, Chen L and Snyder G J 2011 Adv. Mater. 23 5674 4 Madavali B, Kim H S, Lee K H, Isoda Y, Gascoin F and Hong S J 2016 Mater. & Design 112 485 5 Feng S K, Li S M and Fu H Z 2014 Chin. Phys. B 23 117202 6 Cheng P, Song J, Li S, Li J and Wang C 2015 IEEE 11th International Conference on the Properties and Applications of Dielectric Materials (ICPADM), 19-22 July 2015, Sydney, NSW, Australia, pp. 212-215 7 Wei J, Yang L, Ma Z, Song P, Zhang M, Ma J, Yang F and Wang X 2020 J. Mater. Sci. 55 12642 8 Liu H Q, Zhao X B, Liu F, Song Y, Sun Q, Zhu T J and Wang F P 2008 J. Mater. Sci. 43 6933 9 Tan G, Zhao L D and Kanatzidis M G 2016 Chem. Rev. 116 12123 10 Snyder G J and Toberer E S 2008 Nat. Mater. 7 105 11 Jood P, Mehta R J, Zhang Y, Peleckis G, Wang X, Siegel R W, Borca-Tasciuc T, Dou S X and Ramanath G 2011 Nano Lett. 11 4337 12 Gautam D, Engenhorst M, Schilling C, Schierning G, Schmechel R and Winterer M 2015 J. Mater. Chem. A 3 189 13 Tsubota T, Ohtaki M, Eguchi K and Arai H 1997 J. Mater. Chem. 7 85 14 Hoemke J, Khan A U, Yoshida H, Mori T, Tochigi E, Shibata N, Ikuhara Y and Sakka Y 2016 J. Ceram. Soc. Jpn. 124 515 15 Kinemuchi Y, Nakano H, Mikami M, Kobayashi K, Watari K and Hotta Y 2010 J. Appl. Phys. 108 053721 16 Zhu P W, Jia X, Chen H Y, Guo W L, Chen L X, Li D M, Ma H A, Ren G Z and Zou G T 2002 Solid State Commun. 123 43 17 Ohtaki M and Araki K 2011 J. Ceram. Soc. Jpn. 119 813 18 Ohtaki M, Araki K and Yamamoto K 2009 J. Electron. Mater. 38 1234 19 Tanaka Y, Ifuku T, Tsuchida K and Kato A 1997 J. Mater. Sci. Lett. 16 155 20 Guilmeau E, Maignan A and Martin C 2009 J. Electron. Mater. 38 1104 21 Colder H, Guilmeau E, Harnois C, Marinel S, Retoux R and Savary E 2011 J. Eur. Ceram. Soc. 31 2957 22 Cai K F, Müller E, Dra\vsar C and Mrotzek A 2003 Mater. Sci. Engin. B 104 45 23 Liu H, Ma H, Zhang Y, Sun B, Liu B, Kong L, Liu B and Jia X 2017 Inorg. Chem. 56 11275 24 Bai Y, Zhao J, Lv Z and Lu K 2020 J. Mater. Sci. 55 14112 25 Ong K P, Singh D J and Wu P 2011 Phys. Rev. B 83 115110 26 Liu H, Ma H, Wang C, Wang F, Liu B, Chen J, Ji G, Zhang Y and Jia X 2018 Ceram. Int. 44 19859 27 Walia S, Balendhran S, Nili H, Zhuiykov S, Rosengarten G, Wang Q H, Bhaskaran M, Sriram S, Strano M S and Kalantar-Zadeh K 2013 Prog. Mater. Sci. 58 1443 28 Bérardan David, Byl Céline, Dragoe Nita 2010 J. Am. Ceram. Soc. 93 2352 29 Rosten R, Koski M and Koppana E 2006 J. Undergrad. Mater. Res. 2 38 30 Hng H H and Tse K Y 2003 J. Mater. Sci. 38 2367 31 Fan J and Freer R 1997 J. Mater. Sci. 32 415 32 Li P, Deng S H, Zhang L, Yu J Y and Liu G H 2010 Chin. Phys. B 19 117102 33 Zhu H, Su T, Li H, Pu C, Zhou D, Zhu P and Wang X 2017 J. Eur. Ceram. Soc. 37 1541 34 Sun B, Jia X, Zhao J, Li Y, Liu H and Ma H 2018 Inorg. Chem. 57 3323 35 Zhang Y, Jia X, Sun H, Sun B, Liu B, Liu H, Kong L and Ma H 2016 J. Materiomics 2 316 36 Luo Y, Jiang Q, Yang J, Li W, Zhang D, Zhou Z, Cheng Y, Ren Y, He X and Li X 2017 Nano Energy 32 80 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|