Special Issue:
SPECIAL TOPIC — Water at molecular level
|
TOPICAL REVIEW—Water at molecular level |
Prev
Next
|
|
|
Evaporation of nanoscale water on solid surfaces |
Rongzheng Wan(万荣正)1,† and Haiping Fang(方海平)1,2 |
1 Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; 2 Department of Physics, East China University of Science and Technology, Shanghai 200237, China |
|
|
Abstract The evaporation of water is essential in the macroscopic world. Recent researches show that, on solid surfaces, the evaporation of nanoscale water is quite different from that on bulk water surfaces. In this review, we show the theoretical progress in the study of nanoscale water evaporation on various solid surfaces: the evaporation rate of nanoscale water does not show a monotonic decrease when the solid surface changes from hydrophobic to hydrophilic; the evaporation of nanoscale water on hydrophobic-hydrophilic patterned surfaces is unexpectedly faster than that on uniform surface; the evaporation of nanoscale water on patterned graphene oxide is faster than that on homogeneous one; how temperature affects the evaporation of nanoscale water on solid surface; how ions affect the evaporation of nanoscale water on graphene oxide.
|
Received: 30 April 2020
Revised: 17 September 2020
Accepted manuscript online: 14 October 2020
|
PACS:
|
66.90.+r
|
(Other topics in nonelectronic transport properties of condensed matter)
|
|
68.03.Fg
|
(Evaporation and condensation of liquids)
|
|
87.90.+y
|
(Other topics in biological and medical physics)
|
|
89.40.Cc
|
(Water transportation)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U1832170 and 11974366), the Frontier Project of of Chinese Academy of Sciences (Grant No. QYZDJ-SSW-SLH053), Shanghai Supercomputer Center of China, Computer Network Information Center of Chinese Academy of Sciences, National Supercomputing Center in Shenzhen, China (Shenzhen Cloud Computing Center), and Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (the second phase). |
Corresponding Authors:
†Corresponding author. E-mail: wanrongzheng@sinap.ac.cn
|
Cite this article:
Rongzheng Wan(万荣正) and Haiping Fang(方海平) Evaporation of nanoscale water on solid surfaces 2020 Chin. Phys. B 29 126601
|
[1] Kohler M A and Parmele L H Water Resour. Res. 3 997 DOI: 10.1029/WR003i004p009971967 [2] Leuning R, Kelliher F M, Depury D G G and Schulze E D Plant Cell Environ. 18 1183 DOI: 10.1111/pce.1995.18.issue-101995 [3] Evaristo J, Jasechko S and McDonnell J J Nature 525 91 DOI: 10.1038/nature149832015 [4] Fiala D, Lomas K J and Stohrer M J. Appl. Physiol. 87 1957 DOI: 10.1152/jappl.1999.87.5.19571999 [5] Zarei G, Homaee M, Liaghat A M and Hoorfar A H Journal of Hydrology 380 356 DOI: 10.1016/j.jhydrol.2009.11.0102010 [6] Dugas V, Broutin J and Souteyrand E Langmuir 21 9130 DOI: 10.1021/la050764y2005 [7] Chang S T and Velev O D Langmuir 22 1459 DOI: 10.1021/la052695t2006 [8] Park J and Moon J Langmuir 22 3506 DOI: 10.1021/la053450j2006 [9] Duursma G, Sefiane K and Kennedy A Heat Transf. Eng. 30 1108 DOI: 10.1080/014576309029224672009 [10] Cheng W L, Zhang W W, Chen H and Hu L Renew. Sust. Energ. Rev. 55 614 DOI: 10.1016/j.rser.2015.11.0142016 [11] Eames I W, Marr N J and Sabir H International Journal of Heat and Mass Transfer 40 2963 DOI: 10.1016/S0017-9310(96)00339-01997 [12] Ramanathan V, Crutzen P J, Kiehl J T and Rosenfeld D Science 294 2119 DOI: 10.1126/science.10640342001 [13] Jones R L Physiologia Plantarum 10 281 DOI: 10.1111/ppl.1957.10.issue-21957 [14] Potts R O and Francoeur M L Proc. Natl. Acad. Sci. USA 87 3871 DOI: 10.1073/pnas.87.10.38711990 [15] Chen X, Goodnight D, Gao Z H, Cavusoglu A H, Sabharwal N, DeLay M, Driks A and Sahin O Nat. Commun. 6 7346 DOI: 10.1038/ncomms83462015 [16] Cavusoglu A H, Chen X, Gentine P and Sahin O Nat. Commun. 8 617 DOI: 10.1038/s41467-017-00581-w2017 [17] Elbaum M and Lipson S G Phys. Rev. Lett. 72 3562 DOI: 10.1103/PhysRevLett.72.35621994 [18] Shin D H, Lee S H, Jung J Y and Yoo J Y Microelectronic Engineering 86 1350 DOI: 10.1016/j.mee.2009.01.0262009 [19] Lee M, Lee D, Jung N, Yun M, Yim C and Jeon S Appl. Phys. Lett. 98 013107 DOI: 10.1063/1.35419582011 [20] Sobac B and Brutin D Phys. Rev. E 86 021602 DOI: 10.1103/PhysRevE.86.0216022012 [21] Wang C, Lu H, Wang Z, Xiu P, Zhou B, Zuo G, Wan R, Hu J and Fang H Phys. Rev. Lett. 103 137801 DOI: 10.1103/PhysRevLett.103.1378012009 [22] Wang S, Tu Y, Wan R and Fang H J. Phys. Chem. B 116 13863 DOI: 10.1021/jp302142s2012 [23] Yao X, Song Y and Jiang L Adv. Mater. 23 719 DOI: 10.1002/adma.2010026892011 [24] Parker A R and Lawrence C R Nature 414 33 DOI: 10.1038/351021082001 [25] Byrne M E, Barley R, Curtis M, Arroyo J M, Dunham M, Hudson A and Martienssen R A Nature 408 967 DOI: 10.1038/350500912000 [26] Wang H, Ngwenyama N, Liu Y, Walker J C and Zhang S The Plant Cell 19 63 DOI: 10.1105/tpc.106.0482982007 [27] Feng L, Li S H, Li H J, Zhai J, Song Y L, Jiang L and Zhu D B Angew. Chem.-Int. Edit. 41 1221 DOI: 10.1002/(ISSN)1521-37732002 [28] Martines E, Seunarine K, Morgan H, Gadegaard N, Wilkinson C D W and Riehle M O Nano Lett. 5 2097 DOI: 10.1021/nl051435t2005 [29] Yang C, Tartaglino U and Persson B N J Phys. Rev. Lett. 97 116103 DOI: 10.1103/PhysRevLett.97.1161032006 [30] Zhao X D, Fan H M, Liu X Y, Pan H H and Xu H Y Langmuir 27 3224 DOI: 10.1021/la104709d2011 [31] Jung Y C and Bhushan B Scr. Mater. 57 1057 DOI: 10.1016/j.scriptamat.2007.09.0042007 [32] Wu J B, Zhang M Y, Wang X, Li S B and Wen W J Langmuir 27 5705 DOI: 10.1021/la200697k2011 [33] Wan R, Wang C, Lei X, Zhou G and Fang H Phys. Rev. Lett. 115 195901 DOI: 10.1103/PhysRevLett.115.1959012015 [34] Chen D, Feng H B and Li J H Chem. Rev. 112 6027 DOI: 10.1021/cr300115g2012 [35] Park S and Ruoff R S Nat. Nanotechnol. 4 217 DOI: 10.1038/nnano.2009.582009 [36] Geim A K and Novoselov K S Nat. Mater. 6 183 DOI: 10.1038/nmat18492007 [37] Mao H Y, Laurent S, Chen W, Akhavan O, Imani M, Ashkarran A A and Mahmoudi M Chem. Rev. 113 3407 DOI: 10.1021/cr300335p2013 [38] Hong B J, Compton O C, An Z, Eryazici I and Nguyen S T Acs Nano 6 63 DOI: 10.1021/nn202355p2012 [39] Krishnamoorthy K, Veerapandian M, Yun K and Kim S J Carbon 53 38 DOI: 10.1016/j.carbon.2012.10.0132013 [40] Yang J R, Shi G S, Tu Y S and Fang H P Angew. Chem.-Int. Edit. 53 10190 DOI: 10.1002/anie.2014041442014 [41] Lee M, Lee J, Park S Y, Min B, Kim B and In I Scientific Reports 5 11707 DOI: 10.1038/srep117072015 [42] Morimoto N, Kubo T and Nishina Y Scientific Reports 6 21715 DOI: 10.1038/srep217152016 [43] Tong W L, Ong W J, Chai S P, Tan M K and Hung Y M Scientific Reports 5 11896 DOI: 10.1038/srep118962015 [44] Paredes J I, Villar-Rodil S, Martinez-Alonso A and Tascon J M D Langmuir 24 10560 DOI: 10.1021/la801744a2008 [45] Eda G and Chhowalla M Adv. Mater. 22 2392 DOI: 10.1002/adma.v22MMHH222010 [46] Mattevi C, Eda G, Agnoli S, Miller S, Mkhoyan K A, Celik O, Mastrogiovanni D, Granozzi G, Garfunkel E and Chhowalla M Adv. Funct. Mater. 19 2577 DOI: 10.1002/adfm.v19:162009 [47] Cai W W, Piner R D, Stadermann F J, Park S, Shaibat M A, Ishii Y, Yang D X, Velamakanni A, An S J, Stoller M, An J H, Chen D M and Ruoff R S Science 321 1815 DOI: 10.1126/science.11623692008 [48] Pacile D, Meyer J C, Rodriguez A F, Papagno M, Gomez-Navarro C, Sundaram R S, Burghard M, Kern K, Carbone C and Kaiser U Carbon 49 966 DOI: 10.1016/j.carbon.2010.09.0632011 [49] Gomez-Navarro C, Meyer J C, Sundaram R S, Chuvilin A, Kurasch S, Burghard M, Kern K and Kaiser U Nano Lett. 10 1144 DOI: 10.1021/nl90316172010 [50] Tu Y S, Lv M, Xiu P, Huynh T, Zhang M, Castelli M, Liu Z R, Huang Q, Fan C H, Fang H P and Zhou R H Nat. Nanotechnol. 8 594 DOI: 10.1038/nnano.2013.1252013 [51] Wan R Z and Shi G S Phys. Chem. Chem. Phys. 19 8843 DOI: 10.1039/C7CP00553A2017 [52] Drisdell W S, Saykally R J and Cohen R C Proc. Natl. Acad. Sci. USA 106 18897 DOI: 10.1073/pnas.09079881062009 [53] Duffey K C, Shih O, Wong N L, Drisdell W S, Saykally R J and Cohen R C Phys. Chem. Chem. Phys. 15 11634 DOI: 10.1039/c3cp51148k2013 [54] Chuang P Y, Charlson R J and Seinfeld J H Nature 390 594 DOI: 10.1038/375761997 [55] Drisdell W S, Saykally R J and Cohen R C J. Phys. Chem. C 114 11880 DOI: 10.1021/jp101726x2010 [56] Rizzuto A M, Cheng E S, Lam R K and Saykally R J J. Phys. Chem. C 121 4420 DOI: 10.1021/acs.jpcc.6b128512017 [57] Nan X, Guo Y W and Wan R Z Nucl. Sci. Tech. 30 122 DOI: 10.1007/s41365-019-0646-72019 [58] Liu Y W and Zhang X R Phys. Rev. E 88 012404 DOI: 10.1103/PhysRevE.88.0124042013 [59] Sumith Y D and Maroo S C J. Phys. Chem. Lett. 6 3765 DOI: 10.1021/acs.jpclett.5b016272015 [60] Zhong X and Duan F Phys. Chem. Chem. Phys. 18 20664 DOI: 10.1039/C6CP03231A2016 [61] Nagata Y, Hasegawa T, Backus E H G, Usui K, Yoshimune S, Ohto T and Bonn M Phys. Chem. Chem. Phys. 17 23559 DOI: 10.1039/C5CP04022A2015 [62] Fukatani Y, Orejon D, Kita Y, Takata Y, Kim J and Sefiane K Phys. Rev. E 93 043103 DOI: 10.1103/PhysRevE.93.0431032016 [63] Jackson R B, Carpenter S R, Dahm C N, McKnight D M, Naiman R J, Postel S L and Running S W Ecol. Appl. 11 1027 DOI: 10.1890/1051-0761(2001)0111027:WIACW2.0.CO:22001 [64] Guo Y W and Wan R Z Phys. Chem. Chem. Phys. 20 12272 DOI: 10.1039/C8CP00037A2018 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|