Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(12): 126601    DOI: 10.1088/1674-1056/abc0d3
Special Issue: SPECIAL TOPIC — Water at molecular level
TOPICAL REVIEW—Water at molecular level Prev   Next  

Evaporation of nanoscale water on solid surfaces

Rongzheng Wan(万荣正)1,† and Haiping Fang(方海平)1,2
1 Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; 2 Department of Physics, East China University of Science and Technology, Shanghai 200237, China
Abstract  The evaporation of water is essential in the macroscopic world. Recent researches show that, on solid surfaces, the evaporation of nanoscale water is quite different from that on bulk water surfaces. In this review, we show the theoretical progress in the study of nanoscale water evaporation on various solid surfaces: the evaporation rate of nanoscale water does not show a monotonic decrease when the solid surface changes from hydrophobic to hydrophilic; the evaporation of nanoscale water on hydrophobic-hydrophilic patterned surfaces is unexpectedly faster than that on uniform surface; the evaporation of nanoscale water on patterned graphene oxide is faster than that on homogeneous one; how temperature affects the evaporation of nanoscale water on solid surface; how ions affect the evaporation of nanoscale water on graphene oxide.
Keywords:  water evaporation      nanoscale      solid surface  
Received:  30 April 2020      Revised:  17 September 2020      Accepted manuscript online:  14 October 2020
PACS:  66.90.+r (Other topics in nonelectronic transport properties of condensed matter)  
  68.03.Fg (Evaporation and condensation of liquids)  
  87.90.+y (Other topics in biological and medical physics)  
  89.40.Cc (Water transportation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U1832170 and 11974366), the Frontier Project of of Chinese Academy of Sciences (Grant No. QYZDJ-SSW-SLH053), Shanghai Supercomputer Center of China, Computer Network Information Center of Chinese Academy of Sciences, National Supercomputing Center in Shenzhen, China (Shenzhen Cloud Computing Center), and Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (the second phase).
Corresponding Authors:  Corresponding author. E-mail:   

Cite this article: 

Rongzheng Wan(万荣正) and Haiping Fang(方海平) Evaporation of nanoscale water on solid surfaces 2020 Chin. Phys. B 29 126601

[1] Kohler M A and Parmele L H Water Resour. Res. 3 997 DOI: 10.1029/WR003i004p009971967
[2] Leuning R, Kelliher F M, Depury D G G and Schulze E D Plant Cell Environ. 18 1183 DOI: 10.1111/pce.1995.18.issue-101995
[3] Evaristo J, Jasechko S and McDonnell J J Nature 525 91 DOI: 10.1038/nature149832015
[4] Fiala D, Lomas K J and Stohrer M J. Appl. Physiol. 87 1957 DOI: 10.1152/jappl.1999.87.5.19571999
[5] Zarei G, Homaee M, Liaghat A M and Hoorfar A H Journal of Hydrology 380 356 DOI: 10.1016/j.jhydrol.2009.11.0102010
[6] Dugas V, Broutin J and Souteyrand E Langmuir 21 9130 DOI: 10.1021/la050764y2005
[7] Chang S T and Velev O D Langmuir 22 1459 DOI: 10.1021/la052695t2006
[8] Park J and Moon J Langmuir 22 3506 DOI: 10.1021/la053450j2006
[9] Duursma G, Sefiane K and Kennedy A Heat Transf. Eng. 30 1108 DOI: 10.1080/014576309029224672009
[10] Cheng W L, Zhang W W, Chen H and Hu L Renew. Sust. Energ. Rev. 55 614 DOI: 10.1016/j.rser.2015.11.0142016
[11] Eames I W, Marr N J and Sabir H International Journal of Heat and Mass Transfer 40 2963 DOI: 10.1016/S0017-9310(96)00339-01997
[12] Ramanathan V, Crutzen P J, Kiehl J T and Rosenfeld D Science 294 2119 DOI: 10.1126/science.10640342001
[13] Jones R L Physiologia Plantarum 10 281 DOI: 10.1111/ppl.1957.10.issue-21957
[14] Potts R O and Francoeur M L Proc. Natl. Acad. Sci. USA 87 3871 DOI: 10.1073/pnas.87.10.38711990
[15] Chen X, Goodnight D, Gao Z H, Cavusoglu A H, Sabharwal N, DeLay M, Driks A and Sahin O Nat. Commun. 6 7346 DOI: 10.1038/ncomms83462015
[16] Cavusoglu A H, Chen X, Gentine P and Sahin O Nat. Commun. 8 617 DOI: 10.1038/s41467-017-00581-w2017
[17] Elbaum M and Lipson S G Phys. Rev. Lett. 72 3562 DOI: 10.1103/PhysRevLett.72.35621994
[18] Shin D H, Lee S H, Jung J Y and Yoo J Y Microelectronic Engineering 86 1350 DOI: 10.1016/j.mee.2009.01.0262009
[19] Lee M, Lee D, Jung N, Yun M, Yim C and Jeon S Appl. Phys. Lett. 98 013107 DOI: 10.1063/1.35419582011
[20] Sobac B and Brutin D Phys. Rev. E 86 021602 DOI: 10.1103/PhysRevE.86.0216022012
[21] Wang C, Lu H, Wang Z, Xiu P, Zhou B, Zuo G, Wan R, Hu J and Fang H Phys. Rev. Lett. 103 137801 DOI: 10.1103/PhysRevLett.103.1378012009
[22] Wang S, Tu Y, Wan R and Fang H J. Phys. Chem. B 116 13863 DOI: 10.1021/jp302142s2012
[23] Yao X, Song Y and Jiang L Adv. Mater. 23 719 DOI: 10.1002/adma.2010026892011
[24] Parker A R and Lawrence C R Nature 414 33 DOI: 10.1038/351021082001
[25] Byrne M E, Barley R, Curtis M, Arroyo J M, Dunham M, Hudson A and Martienssen R A Nature 408 967 DOI: 10.1038/350500912000
[26] Wang H, Ngwenyama N, Liu Y, Walker J C and Zhang S The Plant Cell 19 63 DOI: 10.1105/tpc.106.0482982007
[27] Feng L, Li S H, Li H J, Zhai J, Song Y L, Jiang L and Zhu D B Angew. Chem.-Int. Edit. 41 1221 DOI: 10.1002/(ISSN)1521-37732002
[28] Martines E, Seunarine K, Morgan H, Gadegaard N, Wilkinson C D W and Riehle M O Nano Lett. 5 2097 DOI: 10.1021/nl051435t2005
[29] Yang C, Tartaglino U and Persson B N J Phys. Rev. Lett. 97 116103 DOI: 10.1103/PhysRevLett.97.1161032006
[30] Zhao X D, Fan H M, Liu X Y, Pan H H and Xu H Y Langmuir 27 3224 DOI: 10.1021/la104709d2011
[31] Jung Y C and Bhushan B Scr. Mater. 57 1057 DOI: 10.1016/j.scriptamat.2007.09.0042007
[32] Wu J B, Zhang M Y, Wang X, Li S B and Wen W J Langmuir 27 5705 DOI: 10.1021/la200697k2011
[33] Wan R, Wang C, Lei X, Zhou G and Fang H Phys. Rev. Lett. 115 195901 DOI: 10.1103/PhysRevLett.115.1959012015
[34] Chen D, Feng H B and Li J H Chem. Rev. 112 6027 DOI: 10.1021/cr300115g2012
[35] Park S and Ruoff R S Nat. Nanotechnol. 4 217 DOI: 10.1038/nnano.2009.582009
[36] Geim A K and Novoselov K S Nat. Mater. 6 183 DOI: 10.1038/nmat18492007
[37] Mao H Y, Laurent S, Chen W, Akhavan O, Imani M, Ashkarran A A and Mahmoudi M Chem. Rev. 113 3407 DOI: 10.1021/cr300335p2013
[38] Hong B J, Compton O C, An Z, Eryazici I and Nguyen S T Acs Nano 6 63 DOI: 10.1021/nn202355p2012
[39] Krishnamoorthy K, Veerapandian M, Yun K and Kim S J Carbon 53 38 DOI: 10.1016/j.carbon.2012.10.0132013
[40] Yang J R, Shi G S, Tu Y S and Fang H P Angew. Chem.-Int. Edit. 53 10190 DOI: 10.1002/anie.2014041442014
[41] Lee M, Lee J, Park S Y, Min B, Kim B and In I Scientific Reports 5 11707 DOI: 10.1038/srep117072015
[42] Morimoto N, Kubo T and Nishina Y Scientific Reports 6 21715 DOI: 10.1038/srep217152016
[43] Tong W L, Ong W J, Chai S P, Tan M K and Hung Y M Scientific Reports 5 11896 DOI: 10.1038/srep118962015
[44] Paredes J I, Villar-Rodil S, Martinez-Alonso A and Tascon J M D Langmuir 24 10560 DOI: 10.1021/la801744a2008
[45] Eda G and Chhowalla M Adv. Mater. 22 2392 DOI: 10.1002/adma.v22MMHH222010
[46] Mattevi C, Eda G, Agnoli S, Miller S, Mkhoyan K A, Celik O, Mastrogiovanni D, Granozzi G, Garfunkel E and Chhowalla M Adv. Funct. Mater. 19 2577 DOI: 10.1002/adfm.v19:162009
[47] Cai W W, Piner R D, Stadermann F J, Park S, Shaibat M A, Ishii Y, Yang D X, Velamakanni A, An S J, Stoller M, An J H, Chen D M and Ruoff R S Science 321 1815 DOI: 10.1126/science.11623692008
[48] Pacile D, Meyer J C, Rodriguez A F, Papagno M, Gomez-Navarro C, Sundaram R S, Burghard M, Kern K, Carbone C and Kaiser U Carbon 49 966 DOI: 10.1016/j.carbon.2010.09.0632011
[49] Gomez-Navarro C, Meyer J C, Sundaram R S, Chuvilin A, Kurasch S, Burghard M, Kern K and Kaiser U Nano Lett. 10 1144 DOI: 10.1021/nl90316172010
[50] Tu Y S, Lv M, Xiu P, Huynh T, Zhang M, Castelli M, Liu Z R, Huang Q, Fan C H, Fang H P and Zhou R H Nat. Nanotechnol. 8 594 DOI: 10.1038/nnano.2013.1252013
[51] Wan R Z and Shi G S Phys. Chem. Chem. Phys. 19 8843 DOI: 10.1039/C7CP00553A2017
[52] Drisdell W S, Saykally R J and Cohen R C Proc. Natl. Acad. Sci. USA 106 18897 DOI: 10.1073/pnas.09079881062009
[53] Duffey K C, Shih O, Wong N L, Drisdell W S, Saykally R J and Cohen R C Phys. Chem. Chem. Phys. 15 11634 DOI: 10.1039/c3cp51148k2013
[54] Chuang P Y, Charlson R J and Seinfeld J H Nature 390 594 DOI: 10.1038/375761997
[55] Drisdell W S, Saykally R J and Cohen R C J. Phys. Chem. C 114 11880 DOI: 10.1021/jp101726x2010
[56] Rizzuto A M, Cheng E S, Lam R K and Saykally R J J. Phys. Chem. C 121 4420 DOI: 10.1021/acs.jpcc.6b128512017
[57] Nan X, Guo Y W and Wan R Z Nucl. Sci. Tech. 30 122 DOI: 10.1007/s41365-019-0646-72019
[58] Liu Y W and Zhang X R Phys. Rev. E 88 012404 DOI: 10.1103/PhysRevE.88.0124042013
[59] Sumith Y D and Maroo S C J. Phys. Chem. Lett. 6 3765 DOI: 10.1021/acs.jpclett.5b016272015
[60] Zhong X and Duan F Phys. Chem. Chem. Phys. 18 20664 DOI: 10.1039/C6CP03231A2016
[61] Nagata Y, Hasegawa T, Backus E H G, Usui K, Yoshimune S, Ohto T and Bonn M Phys. Chem. Chem. Phys. 17 23559 DOI: 10.1039/C5CP04022A2015
[62] Fukatani Y, Orejon D, Kita Y, Takata Y, Kim J and Sefiane K Phys. Rev. E 93 043103 DOI: 10.1103/PhysRevE.93.0431032016
[63] Jackson R B, Carpenter S R, Dahm C N, McKnight D M, Naiman R J, Postel S L and Running S W Ecol. Appl. 11 1027 DOI: 10.1890/1051-0761(2001)0111027:WIACW2.0.CO:22001
[64] Guo Y W and Wan R Z Phys. Chem. Chem. Phys. 20 12272 DOI: 10.1039/C8CP00037A2018
[1] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[2] SnO2/Co3O4 nanofibers using double jets electrospinning as low operating temperature gas sensor
Zhao Wang(王昭), Shu-Xing Fan(范树兴), and Wei Tang(唐伟). Chin. Phys. B, 2022, 31(2): 028101.
[3] Construction and mechanism analysis on nanoscale thermal cloak by in-situ annealing silicon carbide film
Jian Zhang(张健), Hao-Chun Zhang(张昊春), Zi-Liang Huang(黄子亮), Wen-Bo Sun(孙文博), and Yi-Yi Li(李依依). Chin. Phys. B, 2022, 31(1): 014402.
[4] Impact of counter-rotating-wave term on quantum heat transfer and phonon statistics in nonequilibrium qubit-phonon hybrid system
Chen Wang(王晨), Lu-Qin Wang(王鲁钦), and Jie Ren(任捷). Chin. Phys. B, 2021, 30(3): 030506.
[5] A polaron theory of quantum thermal transistor in nonequilibrium three-level systems
Chen Wang(王晨), Da-Zhi Xu(徐大智). Chin. Phys. B, 2020, 29(8): 080504.
[6] Rules essential for water molecular undercoordination
Chang Q Sun(孙长庆). Chin. Phys. B, 2020, 29(8): 088203.
[7] Significant role of nanoscale Bi-rich phase in optimizing thermoelectric performance of Mg3Sb2
Yang Wang(王杨), Xin Zhang(张忻), Yan-Qin Liu(刘燕琴), Jiu-Xing Zhang(张久兴), Ming Yue(岳明). Chin. Phys. B, 2020, 29(6): 067201.
[8] Unifying quantum heat transfer and superradiant signature in a nonequilibrium collective-qubit system:A polaron-transformed Redfield approach
Xu-Min Chen(陈许敏), Chen Wang(王晨). Chin. Phys. B, 2019, 28(5): 050502.
[9] Observation of nonconservation characteristics of radio frequency noise mechanism of 40-nm n-MOSFET
Jun Wang(王军), Xiao-Mei Peng(彭小梅), Zhi-Jun Liu(刘志军), Lin Wang(王林), Zhen Luo(罗震), Dan-Dan Wang(王丹丹). Chin. Phys. B, 2018, 27(2): 027201.
[10] Nanoscale control of low-dimensional spin structures in manganites
Jing Wang(王静), Iftikhar Ahmed Malik, Renrong Liang(梁仁荣), Wen Huang(黄文), Renkui Zheng(郑仁奎), Jinxing Zhang(张金星). Chin. Phys. B, 2016, 25(6): 067504.
[11] Perfect GMR effect in gapped graphene-based ferromagnetic—normal—ferromagnetic junctions
Hossein Karbaschi, Gholam Reza Rashedi. Chin. Phys. B, 2015, 24(4): 047305.
[12] An application of half-terrace model to surface ripening of non-bulk GaAs layers
Liu Ke (刘珂), Guo Xiang (郭祥), Zhou Qing (周清), Zhang Bi-Chan (张毕禅), Luo Zi-Jiang (罗子江), Ding Zhao (丁召). Chin. Phys. B, 2014, 23(4): 046806.
[13] Nanoscale guiding for cold atoms based on surface plasmons alongtips of metallic wedges
Wang Zheng-Ling (王正岭), Tang Wei-Min (唐伟民), Zhou Ming (周明), Gao Chuan-Yu (高传玉). Chin. Phys. B, 2013, 22(7): 073701.
[14] Ripening of single-layer InGaAs islands on GaAs(001)
Liu Ke (刘珂), Zhou Qing (周清), Zhou Xun (周勋), Guo Xiang (郭祥), Luo Zi-Jiang (罗子江), Wang Ji-Hong (王继红), Hu Ming-Zhe (胡明哲), Ding Zhao (丁召). Chin. Phys. B, 2013, 22(2): 026801.
[15] Expressions of the radius and the surface tension of surface of tension in terms of the pressure distribution for nanoscale liquid threads
Yan Hong (闫红), Wei Jiu-An (魏久安), Cui Shu-Wen (崔树稳), Zhu Ru-Zeng (朱如曾). Chin. Phys. B, 2013, 22(12): 126801.
No Suggested Reading articles found!