Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(12): 126503    DOI: 10.1088/1674-1056/abbbe6
Special Issue: SPECIAL TOPIC — Phononics and phonon engineering
Prev   Next  

Lattice thermal conductivity of β12 and χ3 borophene

Jia He(何佳), Yulou Ouyang(欧阳宇楼), Cuiqian Yu(俞崔前), Pengfei Jiang(蒋鹏飞), Weijun Ren(任卫君), and Jie Chen(陈杰)†
Center for Phononics and Thermal Energy Science, China-EU Joint Laboratory for Nanophononics, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
Abstract  Borophene allotropes have many unique physical properties due to their polymorphism and similarity between boron and carbon. In this work, based on the density functional theory and phonon Boltzmann transport equation, we investigate the lattice thermal conductivity $\kappa $ of both β 12 and χ3 borophene. Interestingly, these two allotropes with similar lattice structures have completely different thermal transport properties. β12 borophene has almost isotropic $\kappa $ around 90 W/(mK) at 300 K, while $\kappa $ of χ3 borophene is much larger and highly anisotropic. The room temperature $\kappa $ of χ 3 borophene along the armchair direction is 512 W/(mK), which is comparable to that of hexagonal boron nitride but much higher than most of the two-dimensional materials. The physical mechanisms responsible for such distinct thermal transport behavior are discussed based on the spectral phonon analysis. More interestingly, we uncover a unique one-dimensional transport feature of transverse acoustic phonon in χ3 borophene along the armchair direction, which results in a boost of phonon relaxation time and thus leads to the significant anisotropy and ultrahigh thermal conductivity in χ3 borophene. Our study suggests that χ 3 borophene may have promising application in heat dissipation, and also provides novel insights for enhancing the thermal transport in two-dimensional systems.
Keywords:  borophene      thermal conductivity      two-dimensional (2D) material      density functional theory  
Received:  26 June 2020      Revised:  13 September 2020      Accepted manuscript online:  28 September 2020
PACS:  65.80.-g (Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)  
Fund: Project supported in part by the National Key Research and Development Program of China (Grant No. 2016YFA0200901), the National Natural Science Foundation of China (Grant No. 11890703), the Science and Technology Commission of Shanghai Municipality, China (Grant Nos. 19ZR1478600 and 18JC1410900), the Fundamental Research Funds for the Central Universities, China (Grant No. 22120200069), and the Open Fund of Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion (Grant No. 2018TP1037_201901).
Corresponding Authors:  Corresponding author. E-mail: jie@tongji.edu.cn   

Cite this article: 

Jia He(何佳), Yulou Ouyang(欧阳宇楼), Cuiqian Yu(俞崔前), Pengfei Jiang(蒋鹏飞), Weijun Ren(任卫君), and Jie Chen(陈杰) Lattice thermal conductivity of β12 and χ3 borophene 2020 Chin. Phys. B 29 126503

[1] Pop E Nano Res. 3 147 DOI: 10.1007/s12274-010-1019-z2010
[2] Zhang Z and Chen J Chin. Phys. B 27 35101 DOI: 10.1088/1674-1056/27/3/0351012018
[3] Xu X, Zhou J and Chen J Adv. Funct. Mater. 30 1904704 DOI: 10.1002/adfm.v30.82020
[4] Zhang Z, Hu S, Nakayama T, Chen J and Li B Carbon 139 289 DOI: 10.1016/j.carbon.2018.06.0572018
[5] Liu X, Zhang G and Zhang Y W Carbon 94 760 DOI: 10.1016/j.carbon.2015.07.0612015
[6] Yu Y, Wu L and Zhi J Angew. Chem. Int. Ed. 53 14326 DOI: 10.1002/anie.2013108032014
[7] Berber S, Kwon Y K and Tománek D Phys. Rev. Lett. 84 4613 DOI: 10.1103/PhysRevLett.84.46132000
[8] Kim P, Shi L, Majumdar A and McEuen P L Phys. Rev. Lett. 87 215502 DOI: 10.1103/PhysRevLett.87.2155022001
[9] Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F and Lau C N Nano Lett. 8 902 DOI: 10.1021/nl07318722008
[10] Chen S, Wu Q, Mishra C, Kang J, Zhang H, Cho K, Cai W, Balandin A A and Ruoff R S Nat. Mater. 11 203 DOI: 10.1038/nmat32072012
[11] Seol J H, Jo I, Moore A L, Lindsay L, Aitken Z H, Pettes M T, Li X, Yao Z, Huang R, Broido D, Mingo N, Ruoff R S and Shi L Science 328 213 DOI: 10.1126/science.11840142010
[12] Chen J, Zhang G and Li B Nanoscale 5 532 DOI: 10.1039/C2NR32949B2013
[13] Ghosh S, Bao W, Nika D L, Subrina S, Pokatilov E P, Lau C N and Balandin A A Nat. Mater. 9 555 DOI: 10.1038/nmat27532010
[14] Xu X, Pereira L F, Wang Y, Wu J, Zhang K, Zhao X, Bae S, Tinh Bui C, Xie R, Thong J T, Hong B H, Loh K P, Donadio D, Li B and Ozyilmaz B Nat. Commun. 5 3689 DOI: 10.1038/ncomms46892014
[15] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K Rev. Mod. Phys. 81 109 DOI: 10.1103/RevModPhys.81.1092009
[16] Wang J, Deng S, Liu Z and Liu Z Nat. Sci. Rev. 2 22 DOI: 10.1093/nsr/nwu0802015
[17] Zhang Z, Ouyang Y, Cheng Y, Chen J, Li N and Zhang G Phys. Rep. 860 1 DOI: 10.1016/j.physrep.2020.03.0012020
[18] Zhu X L, Liu P F, Zhang J, Zhang P, Zhou W X, Xie G and Wang B T Nanoscale 11 19923 DOI: 10.1039/C9NR04726C2019
[19] Hu S, Zhang Z, Jiang P, Chen J, Volz S, Nomura M and Li B J. Phys. Chem. Lett. 9 3959 DOI: 10.1021/acs.jpclett.8b016532018
[20] Xu X, Chen J and Li B J. Phys.: Condens. Matter 28 483001 DOI: 10.1088/0953-8984/28/48/4830012016
[21] Hu S, Zhang Z, Jiang P, Ren W, Yu C, Shiomi J and Chen J Nanoscale 11 11839 DOI: 10.1039/C9NR02548K2019
[22] Xu W, Zhang G and Li B J. Chem. Phys. 143 154703 DOI: 10.1063/1.49333112015
[23] Gu X, Li B and Yang R J. Appl. Phys. 119 085106 DOI: 10.1063/1.49428272016
[24] Gu X, Wei Y, Yin X, Li B and Yang R Rev. Mod. Phys. 90 041002 DOI: 10.1103/RevModPhys.90.0410022018
[25] Gu X, Fan Z, Bao H and Zhao C Y Phys. Rev. B 100 064306 DOI: 10.1103/PhysRevB.100.0643062019
[26] Duan X, Wang C, Pan A, Yu R and Duan X Chem. Soc. Rev. 44 8859 DOI: 10.1039/C5CS00507H2015
[27] Sorkin V, Cai Y, Ong Z, Zhang G and Zhang Y W Crit. Rev. Solid. State Mater. Sci. 42 1 DOI: 10.1080/10408436.2016.11824692016
[28] Zhu L, Zhang G and Li B Phys. Rev. B 90 214302 DOI: 10.1103/PhysRevB.90.2143022014
[29] Watanabe K, Taniguchi T and Kanda H Nat. Mater. 3 404 DOI: 10.1038/nmat11342004
[30] Zhang Z, Hu S, Chen J and Li B Nanotechnology 28 225704 DOI: 10.1088/1361-6528/aa6e492017
[31] Andrew J M, XiangFeng Z, Brian K, Joshua D W, Diego A, Benjamin D M, Xiaolong L, Brandon L F, Ulises S, Jeffrey R G, Miguel Jose Y, Arturo P, Artem R O, Mark C H and Nathan P G Science 350 1513 DOI: 10.1126/science.aad10802015
[32] Feng B, Zhang J, Zhong Q, Li W, Li S, Li H, Cheng P, Meng S, Chen L and Wu K Nat. Chem. 8 563 DOI: 10.1038/nchem.24912016
[33] Li D, Gao J, Cheng P, He J, Yin Y, Hu Y, Chen L, Cheng Y and Zhao J Adv. Funct. Mater. 30 1904349 DOI: 10.1002/adfm.v30.82019
[34] Ranjan P, Sahu T K, Bhushan R, Yamijala S S, Late D J, Kumar P and Vinu A Adv. Mater. 31 1900353 DOI: 10.1002/adma.v31.272019
[35] Penev E S, Kutana A and Yakobson B I Nano Lett. 16 2522 DOI: 10.1021/acs.nanolett.6b000702016
[36] Gao M, Li Q Z, Yan X W and Wang J Phys. Rev. B 95 024505 DOI: 10.1103/PhysRevB.95.0245052017
[37] Yang J-Y, Zhang W, Xu C, Liu J, Liu L and Hu M Int. J. Heat Mass Transf. 152 119481 DOI: 10.1016/j.ijheatmasstransfer.2020.1194812020
[38] Li S, Wang A, Hu Y, Gu X, Tong Z and Bao H Mater. Today Phys. 15 100256 DOI: 10.1016/j.mtphys.2020.1002562020
[39] Zhou X F, Dong X, Oganov A R, Zhu Q, Tian Y and Wang H T Phys. Rev. Lett. 112 085502 DOI: 10.1103/PhysRevLett.112.0855022014
[40] Fan X, Ma D, Fu B, Liu C-C and Yao Y Phys. Rev. B 98 195437 DOI: 10.1103/PhysRevB.98.1954372018
[41] Zhong C, Wu W, He J, Ding G, Liu Y, Li D, Yang S A and Zhang G Nanoscale 11 2468 DOI: 10.1039/C8NR08729F2019
[42] Feng B, Sugino O, Liu R Y, Zhang J, Yukawa R, Kawamura M, Iimori T, Kim H, Hasegawa Y, Li H, Chen L, Wu K, Kumigashira H, Komori F, Chiang T C, Meng S and Matsuda I Phys. Rev. Lett. 118 096401 DOI: 10.1103/PhysRevLett.118.0964012017
[43] Feng B, Zhang J, Ito S, Arita M, Cheng C, Chen L, Wu K, Komori F, Sugino O, Miyamoto K, Okuda T, Meng S and Matsuda I Adv. Mater. 30 1704025 DOI: 10.1002/adma.v30.22018
[44] Wang L, Chen X, Du H, Yuan Y, Qu H and Zou M Appl. Surf. Sci. 427 1030 DOI: 10.1016/j.apsusc.2017.08.1262018
[45] Rao D, Zhang L, Meng Z, Zhang X, Wang Y, Qiao G, Shen X, Xia H, Liu J and Lu R J. Mater. Chem. A 5 2328 DOI: 10.1039/C6TA09730H2017
[46] Shukla V, Grigoriev A, Jena N K and Ahuja R Phys. Chem. Chem. Phys. 20 22952 DOI: 10.1039/C8CP03815E2018
[47] Li D, He J, Ding G, Tang Q, Ying Y, He J, Zhong C, Liu Y, Feng C, Sun Q, Zhou H, Zhou P and Zhang G Adv. Funct. Mater. 28 1801685 DOI: 10.1002/adfm.v28.312018
[48] Zhou H, Cai Y, Zhang G and Zhang Y W npj 2D Mater. Appl. 1 14 DOI: 10.1038/s41699-017-0018-22017
[49] He J, Li D, Ying Y, Feng C, He J, Zhong C, Zhou H, Zhou P and Zhang G npj Comput. Mater. 5 47 DOI: 10.1038/s41524-019-0183-22019
[50] Sun H, Li Q and Wan X G Phys. Chem. Chem. Phys. 18 14927 DOI: 10.1039/C6CP02029A2016
[51] Lindsay L, Broido D A and Mingo N Phys. Rev. B 82 115427 DOI: 10.1103/PhysRevB.82.1154272010
[52] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P and Wentzcovitch R M J. Phys.: Condens. Matter 21 395502 DOI: 10.1088/0953-8984/21/39/3955022009
[53] Li W, Carrete J, A. Katcho N and Mingo N Comput. Phys. Comm. 185 1747 DOI: 10.1016/j.cpc.2014.02.0152014
[54] Fugallo G, Lazzeri M, Paulatto L and Mauri F Phys. Rev. B 88 045430 DOI: 10.1103/PhysRevB.88.0454302013
[55] Batsanov S S Inorg. Mater. 37 871 DOI: 10.1023/A:10116257288032001
[56] Feng T, Lindsay L and Ruan X Phys. Rev. B 96 161201 DOI: 10.1103/PhysRevB.96.1612012017
[57] Li S, Zheng Q, Lv Y, Liu X, Wang X, Huang P Y, Cahill D G and Lv B Science 361 579 DOI: 10.1126/science.aat89822018
[58] Sang K J, Li M, Wu H, Nguyen H and Hu Y Science 361 575 DOI: 10.1126/science.aat55222018
[59] Tian F, Song B, Chen X, Ravichandran N, Lv Y, Chen K, Sullivan S, Kim J, Zhou Y, Liu T-H, Goni M, Ding Z, Sun J, Gamage G A G U, Sun H, Ziyaee H, Huyan S, Deng L, Zhou J, Schmidt A J, Chen S, Chu C W, Huang P Y, Broido D, Shi L, Chen G and Ren Z Science 361 582 DOI: 10.1126/science.aat79322018
[60] Gu X, Li S and Bao H Int. J. Heat Mass Transf. 160 120165 DOI: 10.1016/j.ijheatmasstransfer.2020.1201652020
[61] Zhang Z, Chen J and Li B Nanoscale 9 14208 DOI: 10.1039/C7NR04944G2017
[62] Broido D A, Ward A and Mingo N Phys. Rev. B 72 014308 DOI: 10.1103/PhysRevB.72.0143082005
[63] Wang Z, Lu T Y, Wang H Q, Feng Y P and Zheng J C Phys. Chem. Chem. Phys. 18 31424 DOI: 10.1039/C6CP06164H2016
[64] Carrete J, Li W, Lindsay L, Broido D A, Gallego L J and Mingo N Mater. Res. Lett. 4 204 DOI: 10.1080/21663831.2016.11741632016
[65] Zhang Z, Yang Y, Penev E S and Yakobson B I Adv. Funct. Mater. 27 1605059 DOI: 10.1002/adfm.2016050592017
[66] Lindsay L, Li W, Carrete J, Mingo N, Broido D A and Reinecke T L Phys. Rev. B 89 155426 DOI: 10.1103/PhysRevB.89.1554262014
[67] Lindsay L and Broido D A Phys. Rev. B 85 035438 DOI: 10.1103/PhysRevB.85.0354382012
[68] Mortazavi B, Makaremi M, Shahrokhi M, Raeisi M, Singh C V, Rabczuk T and Pereira L F C Nanoscale 10 3759 DOI: 10.1039/C7NR08725J2018
[69] Liu G, Wang H, Gao Y, Zhou J and Wang H Phys. Chem. Chem. Phys. 19 2843 DOI: 10.1039/C6CP07367K2017
[70] Peng B, Zhang H, Shao H, Xu Y, Zhang X and Zhu H Ann. Phys. 528 504 DOI: 10.1002/andp.2015003542016
[71] Qin G, Yan Q B, Qin Z, Yue S Y, Hu M and Su G Phys. Chem. Chem. Phys. 17 4854 DOI: 10.1039/C4CP04858J2015
[72] Peng B, Zhang H, Shao H, Xu Y, Zhang X and Zhu H Sci. Rep. 6 20225 DOI: 10.1038/srep202252016
[73] Becke A D and Edgecombe K E J. Chem. Phys. 92 5397 DOI: 10.1063/1.4585171990
[74] Cepellotti A, Fugallo G, Paulatto L, Lazzeri M, Mauri F and Marzari N Nat. Commun. 6 6400 DOI: 10.1038/ncomms74002015
[75] Lee S, Broido D, Esfarjani K and Chen G Nat. Commun. 6 6290 DOI: 10.1038/ncomms72902015
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[4] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[5] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[6] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[7] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[8] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[9] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[10] In-plane optical anisotropy of two-dimensional VOCl single crystal with weak interlayer interaction
Ruijie Wang(王瑞洁), Qilong Cui(崔其龙), Wen Zhu(朱文), Yijie Niu(牛艺杰), Zhanfeng Liu(刘站锋), Lei Zhang(张雷), Xiaojun Wu(武晓君), Shuangming Chen(陈双明), and Li Song(宋礼). Chin. Phys. B, 2022, 31(9): 096802.
[11] Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4
Liguo Chu(褚利国), Shuangkui Guang(光双魁), Haidong Zhou(周海东), Hong Zhu(朱弘), and Xuefeng Sun(孙学峰). Chin. Phys. B, 2022, 31(8): 087505.
[12] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[13] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[14] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[15] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
No Suggested Reading articles found!