Special Issue:
SPECIAL TOPIC — Phononics and phonon engineering
|
|
|
Lattice thermal conductivity of β12 and χ3 borophene |
Jia He(何佳), Yulou Ouyang(欧阳宇楼), Cuiqian Yu(俞崔前), Pengfei Jiang(蒋鹏飞), Weijun Ren(任卫君), and Jie Chen(陈杰)† |
Center for Phononics and Thermal Energy Science, China-EU Joint Laboratory for Nanophononics, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China |
|
|
Abstract Borophene allotropes have many unique physical properties due to their polymorphism and similarity between boron and carbon. In this work, based on the density functional theory and phonon Boltzmann transport equation, we investigate the lattice thermal conductivity $\kappa $ of both β 12 and χ3 borophene. Interestingly, these two allotropes with similar lattice structures have completely different thermal transport properties. β12 borophene has almost isotropic $\kappa $ around 90 W/(mK) at 300 K, while $\kappa $ of χ3 borophene is much larger and highly anisotropic. The room temperature $\kappa $ of χ 3 borophene along the armchair direction is 512 W/(mK), which is comparable to that of hexagonal boron nitride but much higher than most of the two-dimensional materials. The physical mechanisms responsible for such distinct thermal transport behavior are discussed based on the spectral phonon analysis. More interestingly, we uncover a unique one-dimensional transport feature of transverse acoustic phonon in χ3 borophene along the armchair direction, which results in a boost of phonon relaxation time and thus leads to the significant anisotropy and ultrahigh thermal conductivity in χ3 borophene. Our study suggests that χ 3 borophene may have promising application in heat dissipation, and also provides novel insights for enhancing the thermal transport in two-dimensional systems.
|
Received: 26 June 2020
Revised: 13 September 2020
Accepted manuscript online: 28 September 2020
|
PACS:
|
65.80.-g
|
(Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)
|
|
Fund: Project supported in part by the National Key Research and Development Program of China (Grant No. 2016YFA0200901), the National Natural Science Foundation of China (Grant No. 11890703), the Science and Technology Commission of Shanghai Municipality, China (Grant Nos. 19ZR1478600 and 18JC1410900), the Fundamental Research Funds for the Central Universities, China (Grant No. 22120200069), and the Open Fund of Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion (Grant No. 2018TP1037_201901). |
Corresponding Authors:
†Corresponding author. E-mail: jie@tongji.edu.cn
|
Cite this article:
Jia He(何佳), Yulou Ouyang(欧阳宇楼), Cuiqian Yu(俞崔前), Pengfei Jiang(蒋鹏飞), Weijun Ren(任卫君), and Jie Chen(陈杰) Lattice thermal conductivity of β12 and χ3 borophene 2020 Chin. Phys. B 29 126503
|
[1] Pop E Nano Res. 3 147 DOI: 10.1007/s12274-010-1019-z2010 [2] Zhang Z and Chen J Chin. Phys. B 27 35101 DOI: 10.1088/1674-1056/27/3/0351012018 [3] Xu X, Zhou J and Chen J Adv. Funct. Mater. 30 1904704 DOI: 10.1002/adfm.v30.82020 [4] Zhang Z, Hu S, Nakayama T, Chen J and Li B Carbon 139 289 DOI: 10.1016/j.carbon.2018.06.0572018 [5] Liu X, Zhang G and Zhang Y W Carbon 94 760 DOI: 10.1016/j.carbon.2015.07.0612015 [6] Yu Y, Wu L and Zhi J Angew. Chem. Int. Ed. 53 14326 DOI: 10.1002/anie.2013108032014 [7] Berber S, Kwon Y K and Tománek D Phys. Rev. Lett. 84 4613 DOI: 10.1103/PhysRevLett.84.46132000 [8] Kim P, Shi L, Majumdar A and McEuen P L Phys. Rev. Lett. 87 215502 DOI: 10.1103/PhysRevLett.87.2155022001 [9] Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F and Lau C N Nano Lett. 8 902 DOI: 10.1021/nl07318722008 [10] Chen S, Wu Q, Mishra C, Kang J, Zhang H, Cho K, Cai W, Balandin A A and Ruoff R S Nat. Mater. 11 203 DOI: 10.1038/nmat32072012 [11] Seol J H, Jo I, Moore A L, Lindsay L, Aitken Z H, Pettes M T, Li X, Yao Z, Huang R, Broido D, Mingo N, Ruoff R S and Shi L Science 328 213 DOI: 10.1126/science.11840142010 [12] Chen J, Zhang G and Li B Nanoscale 5 532 DOI: 10.1039/C2NR32949B2013 [13] Ghosh S, Bao W, Nika D L, Subrina S, Pokatilov E P, Lau C N and Balandin A A Nat. Mater. 9 555 DOI: 10.1038/nmat27532010 [14] Xu X, Pereira L F, Wang Y, Wu J, Zhang K, Zhao X, Bae S, Tinh Bui C, Xie R, Thong J T, Hong B H, Loh K P, Donadio D, Li B and Ozyilmaz B Nat. Commun. 5 3689 DOI: 10.1038/ncomms46892014 [15] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K Rev. Mod. Phys. 81 109 DOI: 10.1103/RevModPhys.81.1092009 [16] Wang J, Deng S, Liu Z and Liu Z Nat. Sci. Rev. 2 22 DOI: 10.1093/nsr/nwu0802015 [17] Zhang Z, Ouyang Y, Cheng Y, Chen J, Li N and Zhang G Phys. Rep. 860 1 DOI: 10.1016/j.physrep.2020.03.0012020 [18] Zhu X L, Liu P F, Zhang J, Zhang P, Zhou W X, Xie G and Wang B T Nanoscale 11 19923 DOI: 10.1039/C9NR04726C2019 [19] Hu S, Zhang Z, Jiang P, Chen J, Volz S, Nomura M and Li B J. Phys. Chem. Lett. 9 3959 DOI: 10.1021/acs.jpclett.8b016532018 [20] Xu X, Chen J and Li B J. Phys.: Condens. Matter 28 483001 DOI: 10.1088/0953-8984/28/48/4830012016 [21] Hu S, Zhang Z, Jiang P, Ren W, Yu C, Shiomi J and Chen J Nanoscale 11 11839 DOI: 10.1039/C9NR02548K2019 [22] Xu W, Zhang G and Li B J. Chem. Phys. 143 154703 DOI: 10.1063/1.49333112015 [23] Gu X, Li B and Yang R J. Appl. Phys. 119 085106 DOI: 10.1063/1.49428272016 [24] Gu X, Wei Y, Yin X, Li B and Yang R Rev. Mod. Phys. 90 041002 DOI: 10.1103/RevModPhys.90.0410022018 [25] Gu X, Fan Z, Bao H and Zhao C Y Phys. Rev. B 100 064306 DOI: 10.1103/PhysRevB.100.0643062019 [26] Duan X, Wang C, Pan A, Yu R and Duan X Chem. Soc. Rev. 44 8859 DOI: 10.1039/C5CS00507H2015 [27] Sorkin V, Cai Y, Ong Z, Zhang G and Zhang Y W Crit. Rev. Solid. State Mater. Sci. 42 1 DOI: 10.1080/10408436.2016.11824692016 [28] Zhu L, Zhang G and Li B Phys. Rev. B 90 214302 DOI: 10.1103/PhysRevB.90.2143022014 [29] Watanabe K, Taniguchi T and Kanda H Nat. Mater. 3 404 DOI: 10.1038/nmat11342004 [30] Zhang Z, Hu S, Chen J and Li B Nanotechnology 28 225704 DOI: 10.1088/1361-6528/aa6e492017 [31] Andrew J M, XiangFeng Z, Brian K, Joshua D W, Diego A, Benjamin D M, Xiaolong L, Brandon L F, Ulises S, Jeffrey R G, Miguel Jose Y, Arturo P, Artem R O, Mark C H and Nathan P G Science 350 1513 DOI: 10.1126/science.aad10802015 [32] Feng B, Zhang J, Zhong Q, Li W, Li S, Li H, Cheng P, Meng S, Chen L and Wu K Nat. Chem. 8 563 DOI: 10.1038/nchem.24912016 [33] Li D, Gao J, Cheng P, He J, Yin Y, Hu Y, Chen L, Cheng Y and Zhao J Adv. Funct. Mater. 30 1904349 DOI: 10.1002/adfm.v30.82019 [34] Ranjan P, Sahu T K, Bhushan R, Yamijala S S, Late D J, Kumar P and Vinu A Adv. Mater. 31 1900353 DOI: 10.1002/adma.v31.272019 [35] Penev E S, Kutana A and Yakobson B I Nano Lett. 16 2522 DOI: 10.1021/acs.nanolett.6b000702016 [36] Gao M, Li Q Z, Yan X W and Wang J Phys. Rev. B 95 024505 DOI: 10.1103/PhysRevB.95.0245052017 [37] Yang J-Y, Zhang W, Xu C, Liu J, Liu L and Hu M Int. J. Heat Mass Transf. 152 119481 DOI: 10.1016/j.ijheatmasstransfer.2020.1194812020 [38] Li S, Wang A, Hu Y, Gu X, Tong Z and Bao H Mater. Today Phys. 15 100256 DOI: 10.1016/j.mtphys.2020.1002562020 [39] Zhou X F, Dong X, Oganov A R, Zhu Q, Tian Y and Wang H T Phys. Rev. Lett. 112 085502 DOI: 10.1103/PhysRevLett.112.0855022014 [40] Fan X, Ma D, Fu B, Liu C-C and Yao Y Phys. Rev. B 98 195437 DOI: 10.1103/PhysRevB.98.1954372018 [41] Zhong C, Wu W, He J, Ding G, Liu Y, Li D, Yang S A and Zhang G Nanoscale 11 2468 DOI: 10.1039/C8NR08729F2019 [42] Feng B, Sugino O, Liu R Y, Zhang J, Yukawa R, Kawamura M, Iimori T, Kim H, Hasegawa Y, Li H, Chen L, Wu K, Kumigashira H, Komori F, Chiang T C, Meng S and Matsuda I Phys. Rev. Lett. 118 096401 DOI: 10.1103/PhysRevLett.118.0964012017 [43] Feng B, Zhang J, Ito S, Arita M, Cheng C, Chen L, Wu K, Komori F, Sugino O, Miyamoto K, Okuda T, Meng S and Matsuda I Adv. Mater. 30 1704025 DOI: 10.1002/adma.v30.22018 [44] Wang L, Chen X, Du H, Yuan Y, Qu H and Zou M Appl. Surf. Sci. 427 1030 DOI: 10.1016/j.apsusc.2017.08.1262018 [45] Rao D, Zhang L, Meng Z, Zhang X, Wang Y, Qiao G, Shen X, Xia H, Liu J and Lu R J. Mater. Chem. A 5 2328 DOI: 10.1039/C6TA09730H2017 [46] Shukla V, Grigoriev A, Jena N K and Ahuja R Phys. Chem. Chem. Phys. 20 22952 DOI: 10.1039/C8CP03815E2018 [47] Li D, He J, Ding G, Tang Q, Ying Y, He J, Zhong C, Liu Y, Feng C, Sun Q, Zhou H, Zhou P and Zhang G Adv. Funct. Mater. 28 1801685 DOI: 10.1002/adfm.v28.312018 [48] Zhou H, Cai Y, Zhang G and Zhang Y W npj 2D Mater. Appl. 1 14 DOI: 10.1038/s41699-017-0018-22017 [49] He J, Li D, Ying Y, Feng C, He J, Zhong C, Zhou H, Zhou P and Zhang G npj Comput. Mater. 5 47 DOI: 10.1038/s41524-019-0183-22019 [50] Sun H, Li Q and Wan X G Phys. Chem. Chem. Phys. 18 14927 DOI: 10.1039/C6CP02029A2016 [51] Lindsay L, Broido D A and Mingo N Phys. Rev. B 82 115427 DOI: 10.1103/PhysRevB.82.1154272010 [52] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P and Wentzcovitch R M J. Phys.: Condens. Matter 21 395502 DOI: 10.1088/0953-8984/21/39/3955022009 [53] Li W, Carrete J, A. Katcho N and Mingo N Comput. Phys. Comm. 185 1747 DOI: 10.1016/j.cpc.2014.02.0152014 [54] Fugallo G, Lazzeri M, Paulatto L and Mauri F Phys. Rev. B 88 045430 DOI: 10.1103/PhysRevB.88.0454302013 [55] Batsanov S S Inorg. Mater. 37 871 DOI: 10.1023/A:10116257288032001 [56] Feng T, Lindsay L and Ruan X Phys. Rev. B 96 161201 DOI: 10.1103/PhysRevB.96.1612012017 [57] Li S, Zheng Q, Lv Y, Liu X, Wang X, Huang P Y, Cahill D G and Lv B Science 361 579 DOI: 10.1126/science.aat89822018 [58] Sang K J, Li M, Wu H, Nguyen H and Hu Y Science 361 575 DOI: 10.1126/science.aat55222018 [59] Tian F, Song B, Chen X, Ravichandran N, Lv Y, Chen K, Sullivan S, Kim J, Zhou Y, Liu T-H, Goni M, Ding Z, Sun J, Gamage G A G U, Sun H, Ziyaee H, Huyan S, Deng L, Zhou J, Schmidt A J, Chen S, Chu C W, Huang P Y, Broido D, Shi L, Chen G and Ren Z Science 361 582 DOI: 10.1126/science.aat79322018 [60] Gu X, Li S and Bao H Int. J. Heat Mass Transf. 160 120165 DOI: 10.1016/j.ijheatmasstransfer.2020.1201652020 [61] Zhang Z, Chen J and Li B Nanoscale 9 14208 DOI: 10.1039/C7NR04944G2017 [62] Broido D A, Ward A and Mingo N Phys. Rev. B 72 014308 DOI: 10.1103/PhysRevB.72.0143082005 [63] Wang Z, Lu T Y, Wang H Q, Feng Y P and Zheng J C Phys. Chem. Chem. Phys. 18 31424 DOI: 10.1039/C6CP06164H2016 [64] Carrete J, Li W, Lindsay L, Broido D A, Gallego L J and Mingo N Mater. Res. Lett. 4 204 DOI: 10.1080/21663831.2016.11741632016 [65] Zhang Z, Yang Y, Penev E S and Yakobson B I Adv. Funct. Mater. 27 1605059 DOI: 10.1002/adfm.2016050592017 [66] Lindsay L, Li W, Carrete J, Mingo N, Broido D A and Reinecke T L Phys. Rev. B 89 155426 DOI: 10.1103/PhysRevB.89.1554262014 [67] Lindsay L and Broido D A Phys. Rev. B 85 035438 DOI: 10.1103/PhysRevB.85.0354382012 [68] Mortazavi B, Makaremi M, Shahrokhi M, Raeisi M, Singh C V, Rabczuk T and Pereira L F C Nanoscale 10 3759 DOI: 10.1039/C7NR08725J2018 [69] Liu G, Wang H, Gao Y, Zhou J and Wang H Phys. Chem. Chem. Phys. 19 2843 DOI: 10.1039/C6CP07367K2017 [70] Peng B, Zhang H, Shao H, Xu Y, Zhang X and Zhu H Ann. Phys. 528 504 DOI: 10.1002/andp.2015003542016 [71] Qin G, Yan Q B, Qin Z, Yue S Y, Hu M and Su G Phys. Chem. Chem. Phys. 17 4854 DOI: 10.1039/C4CP04858J2015 [72] Peng B, Zhang H, Shao H, Xu Y, Zhang X and Zhu H Sci. Rep. 6 20225 DOI: 10.1038/srep202252016 [73] Becke A D and Edgecombe K E J. Chem. Phys. 92 5397 DOI: 10.1063/1.4585171990 [74] Cepellotti A, Fugallo G, Paulatto L, Lazzeri M, Mauri F and Marzari N Nat. Commun. 6 6400 DOI: 10.1038/ncomms74002015 [75] Lee S, Broido D, Esfarjani K and Chen G Nat. Commun. 6 6290 DOI: 10.1038/ncomms72902015 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|