Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(10): 108501    DOI: 10.1088/1674-1056/ac693c
REVIEW Prev   Next  

Multiplexing technology based on SQUID for readout of superconducting transition-edge sensor arrays

Xinyu Wu(吴歆宇), Qing Yu(余晴), Yongcheng He(何永成), Jianshe Liu(刘建设), and Wei Chen(陈炜)
School of Integrated Circuits, Tsinghua University, Beijing 100084, China
Abstract  Multiplexing technologies based on superconducting quantum interference devices (SQUIDs) are crucial to cryogenic readout of superconducting transition-edge sensor (TES) arrays. Demands for large-scale TES arrays promote the development of multiplexing technologies towards large multiplexing factors and low readout noise. The development of multiplexing technologies also facilitates new applications of TES arrays in a wide range of frequencies. Here we summarize different types of SQUID-based multiplexing technologies including time-division multiplexing, code-division multiplexing, frequency-division multiplexing and microwave SQUID multiplexing. The advances and parameter constraints of each multiplexing technology are also discussed.
Keywords:  superconducting transition-edge sensor arrays      superconducting quantum interference devices      multiplexing technology      cryogenic readout  
Received:  29 March 2022      Revised:  20 April 2022      Accepted manuscript online: 
PACS:  85.25.Oj (Superconducting optical, X-ray, and γ-ray detectors (SIS, NIS, transition edge))  
  85.25.Dq (Superconducting quantum interference devices (SQUIDs))  
  07.20.Fw (Calorimeters)  
  07.57.Kp (Bolometers; infrared, submillimeter wave, microwave, and radiowave receivers and detectors)  
Fund: Project supported by the National Science Foundation of China (Grant Nos. 11653001 and 11653004).
Corresponding Authors:  Wei Chen     E-mail:  weichen@tsinghua.edu.cn

Cite this article: 

Xinyu Wu(吴歆宇), Qing Yu(余晴), Yongcheng He(何永成), Jianshe Liu(刘建设), and Wei Chen(陈炜) Multiplexing technology based on SQUID for readout of superconducting transition-edge sensor arrays 2022 Chin. Phys. B 31 108501

[1] Ullom J N, Beall J A, Doriese W B, Duncan W D, Ferreira L, Hilton G C, Irwin K D, Reintsema C D and Vale L R 2005 Appl. Phys. Lett. 87 194103
[2] Oshima T, Yamakawa Y, Kurabayashi H, Hoshino A, Ishisaki Y, Ohashi T, Mitsuda K and Tanaka K 2008 J. Low Temp. Phys. 151 430
[3] Miyazaki T, Ullom J N, Cunningham M F and Labov S E 2003 IEEE Trans. Appl. Supercond. 13 630
[4] Ezoe Y, Ohashi T and Mitsuda K 2021 Rev. Mod. Plasma Phys. 5 4
[5] Zhang H J, Wen J, Mo Z H, Liu H R, Wang X D, Xiong Z H, Zhang J W and Shuai M B 2021 Chin. Phys. B 30 117401
[6] Bonetti J A, Turner A D, Bock J J, Brevik J A, Day P K, Filippini J, Golwala S R, Holmes W, Jones W C and Kenyon M 2012 J. Low Temp. Phys. 167 146
[7] Suzuki T, Khosropanah P, Hijmering R A, Ridder M, Schoemans M, Hoevers H and Gao J R 2014 IEEE Trans. Terahertz Sci. Technol. 4 171
[8] Marnieros S, Ade P, Alberro J G, Almela A and Zullo A 2020 J. Low Temp. Phys. 199 955
[9] O'Brient R, Ade P, Arnold K, Edwards J, Engargiola G, Holzapfel W L, Lee A T, Myers M J, Quealy E, Rebeiz G, Richards P and Suzuki A 2013 Appl. Phys. Lett. 102 063506
[10] Karasik B S and Cantor R 2011 Appl. Phys. Lett. 98 193503
[11] Lolli L, Taralli E, Portesi C, Monticone E and Rajteri M 2013 Appl. Phys. Lett. 103 041107
[12] Lolli L, Taralli E, Rajteri M 2012 J. Low Temp. Phys. 167 803
[13] Lolli L, Taralli E, Portesi C, Rajteri M and Monticone E 2016 Sensors 16 953
[14] Schmidt M, von Helversen M, López M, Gericke F, Schlottmann E, Heindel T, Kück S, Reitzenstein S and Beyer J 2018 J. Low Temp. Phys. 193 1243
[15] Zhang Q Y, Wang T S, Liu J S, Dong W H, He G F, Li T F, Zhou X X and C W 2014 Chin. Phys. B 23 118502
[16] Braginski A I and Clarke J 2004 The SQUID Handbook: Fundamentals and Technology of SQUIDs and SQUID Systems (New York: Wiley) vol. I pp. 1—28
[17] Granata C, Russo C D, Monaco A and Russo M 2001 IEEE Trans. Appl. Supercond. 11 95
[18] Shimizu N, Chiba N, Yabe S, Ishikawa T, Chinone K and Kiryu S 1993 IEEE Trans. Appl. Supercond. 3 1828
[19] Irwin K D, Hilton G C, Martinis J M and Cabrera B 1996 Nucl. Instrum. Methods Phys. Res. A 370 177
[20] Luukanen A, Kinnunen K M, Nuottajärvi A K, Hoevers H F C, Bergmann Tiest W M and Pekola J P 2003 Phys. Rev. Lett. 90 238306
[21] Mo Z H, Lu C, Liu Y, Feng W, Zhang Y, Zhang W, Tan S Y, Zhang H J, Guo C Y, Wang X D, Wang L, Yang R Z, Ren Z G, Zhu X G, Xiong Z H, An Q and Lai X C 2018 Chin. Phys. B 27 067403
[22] Morgan K M, Pappas C G, Bennett D A, Gard J D, Hays-Wehle J P, Hilton G C, Reintsema C D, Schmidt D R, Ullom J N and Swetz D S 2017 Appl. Phys. Lett. 110 212602
[23] Irwin K D 1995 Appl. Phys. Lett. 66 1998
[24] Lee S F, Gildemeister J M, Holmes W, Lee A T and Richards P L 1998 Appl. Opt. 37 3391
[25] Foglietti V, Stawiasz K G, Ketchen M B and Koch R H 1993 IEEE Trans. Appl. Supercond. 3 3061
[26] Irwin K D and Hilton G C 2005 Cryogenic Particle Detection (Topics in Applied Physics) vol. 99 (Berlin: Springer) pp. 63—150
[27] Kiviranta M, Seppa H, Kuur J and Korte P 2002 AIP Conf. Proc. 605 295
[28] Ullom J N and Bennett D A 2015 Supercond. Sci. Technol. 28 084003
[29] Doriese W B, Ullom J N, Beall J A, Duncan W D, Ferreira L, Hilton G C, Horansky R D, Irwin K D, Mates J A B, Reintsema C D, Vale L R, Xu Y, Zink B L, Rabin M W, Hoover A S, Rudy C R and Vo D T 2007 Appl. Phys. Lett. 90 193508
[30] Drung D 2002 Physica C 368 134
[31] Myoren H, Goto M, Taino T, Kikuchi K, Nakagawa H, Tokoro K, Aoyagi M and Takada S 2005 IEEE Trans. Appl. Supercond. 15 332
[32] Durkin M, O'Neil G C, Doriese W B, Gard J D, Hilton G C, Imrek J, Ortiz N, Reintsema C D, Stevens R W, Swetz D S and Ullom J N 2020 J. Low Temp. Phys. 199 275
[33] Doriese W B, Beall J A, Deiker S, Duncan W D, Ferreira L, Hilton G C, Irwin K D, Reintsema C D, Ullom J N and Vale L R 2004 Appl. Phys. Lett. 85 4762
[34] Uhlig J, Fullagar W, Ullim J N, Doriese W B, Fowler J W, Swetz D S, Gador N, Canton S E, Kinnunen K, Maasilta I J, Reintsema C D, Bennett D A, Vale L R, Hilton G C, Irwin K D, Schmidt D R and Sundström V 2013 Phys. Rev. Lett. 110 138302
[35] Ullom J N, Doriese W B, Fischer D A, Fowler J W, Hilton G C, Jaye C, Reintsema C D, Swetz D S and Schmidt D R 2014 Synchrotron Radiat. News 27 24
[36] Beyer J and Drung D 2008 Supercond. Sci. Technol. 21 105022
[37] Beev N, Kiviranta M, van der Kuur J, Bruijn M, Brandel O, Linzen S, Fritzsch L, Ahoranta J, Penttilä J and Roschier L 2014 J. Phys. Conf. Ser. 507 042003
[38] Doriese W B, Morgan K M, Bennett D A, Denison E V, Fitzgerald C P, Fowler J W, Gard J D, Hays-Wehle J P, Hilton G C, Irwin K D, Joe Y I, Mates J A B, O'Neil G C, Reintsema C D, Robbins N O, Schmidt D R, Swetz D S, Tatsuno H, Vale L R and Ullom J N 2016 J. Low Temp. Phys. 184 389
[39] Zappe H H 1977 IEEE Trans. Magn. 13 41
[40] Stawiasz K G and Ketchen M B 1993 IEEE Trans. Appl. Supercond. 3 1808
[41] Morooka T, Tanaka K, Nagata A, Nakayama S and Chinone K 2003 Physica B 329—333 1510
[42] Drung D, Aßmann C, Beyer J, Kirste A, Peters M, Ruede F and Schurig T 2007 IEEE Trans. Appl. Supercond. 17 699
[43] Dawson C S, Chaudhuri S, Titus C J, Cho H-M, Denison E V, Doriese W B, Durkin M, FitzGerald C T, Hilton G C, Irwin K D, Li D, O'Neil G C, Reintsema C D, Steffen Z, Stevens R W, Swetz D S, Ullom J N, Vale L R, Weber J C and Young B A 2019 IEEE Trans. Appl. Supercond. 29 2500205
[44] Irwin K D, Hilton G C, Wollman D A and Martinis J M 1998 J. Appl. Phys. 83 3978
[45] Heinz E, Zakosarenko V, May T and Meyer H G 2013 Supercond. Sci. Technol. 26 045013
[46] Drung D 2003 Supercond. Sci. Technol. 16 1320
[47] Bennett D A, Horansky R D, Schmidt D R, Hoover A S, Winkler R, Alpert B K, Beall J A, Doriese W B, Fowler J W, Fitzgerald C P, Hilton G C, Irwin K D, Kotsubo V, Mates J A B, O'Neil G C, Rabin M W, Reintsema, Schima F J, Swetz D S, Vale L R and Ullom J N 2012 Rev. Sci. Instrum. 83 093113
[48] Prêle D, Voisin F, Piat M, Decourcelle T, Perbost C, Chapron C, Rambaud D, Maestre S, Marty W and Montier L 2016 J. Low Temp. Phys. 184 363
[49] Irwin K D, Niemack M D, Beyer J, Cho H M, Doriese W B, Hilton G C, Reintsema C D, Schmidt D R, Ullom J N and Vale L R 2010 Supercond. Sci. Technol. 23 034004
[50] Stiehl G M, Doriese W B, Fowler J W, Hilton G C, Irwin K D, Reintsema C D, Schmidt D R, Swetz D S, Ullom J N and Vale L R 2012 Appl. Phys. Lett. 100 072601
[51] Niemack M D, Beyer J, Cho H M, Doriese W B, Hilton G C, Irwin K D, Reintsema C D, Schmidt D R, Ullom J N and Vale L R 2010 Appl. Phys. Lett. 96 163509
[52] Titus C J, Chaudhuri S, Cho H M, Dawson C, Doriese W B, Fowler J W, Hilton G C, Irwin K D, Kuenstner S, Li D, Morgan K, Reintsema C D, Swetz D S, Ullom J N and Young B A 2018 J. Low Temp. Phys. 193 556
[53] Weber J C, Fowler J W, Durkin M, Morgan K M, Mates J A B, Bennett D A, Doriese W B, Schmidt D R, Hilton G C, Swetz D S and Ullom J N 2019 Appl. Phys. Lett. 114 232602
[54] Fowler J W, Doriese W B, Hilton G, Irwin K, Schmidt D, Stiehl G, Swetz D, Ullom J N and Vale L 2012 J. Low Temp. Phys. 167 713
[55] Irwin K D, Cho H M, Doriese W B, Fowler J W, Hilton G C, Niemack M D, Reintsema C D, Schmidt D R, Ullom J N and Vale L R 2012 J. Low Temp. Phys. 167 588
[56] Morgan K M, Alpert B K, Bennett D A, Denison E V, Doriese W B, Fowler J W, Gard J D, Hilton G C, Irwin K D, Joe Y I, O'Neil G C, Reintsema C D, Schmidt D R, Ullom J N and Swetz D S 2016 Appl. Phys. Lett. 109 112604
[57] Reintsema C D, Bennett D A, Denison E V, Durkin M, Doriese W B, Fowler J W, Gard J D, Grigorian A, Hilton G C, Hubmayr J, O'Neil G C, Mates J A B, Morgan K M, Schmidt D R, Stevens R W, Swetz D S, Vale L R, Ullom J N, Irwin K D, Chaudhuri S, Titus C J and Dawson C S 2019 IEEE Trans. Appl. Supercond. 29 2500406
[58] Doriese W B, Bandler S R, Chaudhuri S, Dawson C S, Denison E V, Duff S M, Durkin M, FitzGerald C T, Fowler J W, Gard J D, Hilton G C, Irwin K D, Joe Y I, Morgan K M, O'Neil G C, Pappas C G, Reintsema C D, Rudman D A, Smith S J, Stevens R W, Swetz D S, Szypryt P, Ullom J N, Vale L R, Weber J C and Young B A 2019 IEEE Trans. Appl. Supercond. 29 2500305
[59] Yu C, Ames A, Chaudhuri S, Dawson C, Irwin K D, Kuenstner S E, Li D and Titus C J 2020 Eng. Res. Express 2 015011
[60] Yoon J, Clarke J, Gildemeister J M, Lee A T, Myers M J, Richards P L and Skidmore J T 2001 Appl. Phys. Lett. 78 371
[61] Lanting T M, Cho H M, Clarke J, Dobbs M, Lee A T, Richards P L, Smith A D and Spieler H G 2003 IEEE Trans. Appl. Supercond. 13 626
[62] Lanting T M, Cho H M, Clarke J, Holzapfel W L, Lee A T, Lueker M, Richards P L, Dobbs M A, Spieler H and Smith A 2005 Appl. Phys. Lett. 86 112511
[63] Sakai K, Takei Y, Yamamoto R, Yamasaki N Y, Mitsuda K, Hidaka M, Nagasawa S, Kohjiro S and Miyazaki T 2014 J. Low Temp. Phys. 176 400
[64] Dobbs M, Aubin F, Hann T D, Hanany S, Harrington N, Holzapfel W, Hubmayr J, Lee A, Lueker M, Macdermid K and Smecher G 2012 J. Low Temp. Phys. 167 568
[65] Hattori K, Akiba Y, Arnold K, Barron D, Bender A N, Cukierman A, de Haan T, Dobbs M, Elleflot T, Hasegawa M, Hazumi M, Holzapfel W, Hori Y, Keating B, Kusaka A, Lee A, Montgomery J, Rotermund K, Shirley I, Suzuki A and Whitehorn N 2016 J. Low Temp. Phys. 184 512
[66] Akamatsu H, Gottardi L, Adams J, Bailey C, Bandler S, Bruijn M, Chervenak J, Eckart M, Finkbeiner F, Hartog R, Hoevers H, Kelley R, Kuur J, Linden T, Lindeman M, Porter F, Sadleir J, Smith S, Beyer J and Kiviranta M 2013 IEEE Trans. Appl. Supercond. 23 2100503
[67] Akamatsu H, Gottardi L, Adams J, Bandler S, Bruijn M, Chervenak J, Eckart M, Finkbeiner F, Hartog R, Hoevers H, Kelley R, Kilbourne C, Kurr J, Linden A J, Porter F, Sadleir J, Smith S and Kiviranta M 2014 J. Low Temp. Phys. 176 591
[68] Bruijn M P, Gottardi L, den Hartog R H, Hoevers H F C, de Korte P A J and van der Kuur J 2011 IEEE Trans. Appl. Supercond. 21 294
[69] Bruijn M P, Gottardi L, den Hartog R H, Hoevers H F C, Kiviranta M, de Korte P A J and van der Kuur J 2012 J. Low Temp. Phys. 167 695
[70] Yamamoto R, Sakai K, Takei Y, Yamasaki N Y and Mitsuda K 2014 J. Low Temp. Phys. 176 453
[71] Dobbs M A, Lueker M, Aird K A, Bender A N, Benson B A, Bleem L E, Carlstrom J E, Chang C L, Cho H-M, Clarke J, Crawford T M, Crites A T, Flanigan D I, de Haan T, George E M, Halverson N W, Holzapfel W L, Hrubes J D, Johnson B R, Joseph J, Keisler R, Kennedy J, Kermish Z, Lanting T M, Lee A T, Leitch E M, Luong-Van D, McMahon J J, Mehl J, Meyer S S, Montroy T E, Padin S, Plagge T, Pryke C, Richards P L, Ruhl J E, Schaffer K K, Schwan D, Shirokoff E, Spieler H G, Staniszewski Z, Stark A A, Vanderlinde K, Vieira J D, Vu C, Westbrook B and Williamson R 2012 Rev. Sci. Instrum. 83 073113
[72] Sakai K, Yamamoto R, Takei Y, Yamasaki N Y, Mitsuda K, Miyazaki T, Hidaka M, Nagasawa S and Kohjiro S 2015 15th International Superconductive Electronics Conference (ISEC), July 6—9, 2015, Nagoya, Japan, pp. 1—4
[73] Wang Q, Khosropanah P, Kuur J, Lange G D, Audley M D, Aminaei A, Hijmering R, Ridder M L, llyas S, Linden A J, Bruijn M P, Tak F and Gao J R 2021 Rev. Sci. Instrum. 92 014710
[74] Hartog R, Barret D, Gottardi L, Herder J, Jackson B, Korte P, Kuur J, Leeuwen B, Loon D Nieuwenhuizen A and Ravera L 2014 Proc. SPIE 9144 91445Q
[75] Hartog R D, Audley M D, Beyer J, Boersma D, Bruijn M, Gottardi L, Hoevers H, Hou R, Keizer G, Khosropanah P, Kiviranta M, Korte P, Kurr J, Leeuwen B J, Nieuwenhuizen A C T and Winden P 2012 J. Low Temp. Phys. 167 652
[76] Audley M D, Wang Q, Hijmering R A, Khosropanah P, de Lange G, van der Linden A J, Ridder M L and Taralli E 2020 J. Low Temp. Phys. 199 723
[77] Hahn I, Day P, Bumble B and Leduc H G 2008 J. Low Temp. Phys. 151 934
[78] Mates J A B, Hilton G C, Lrwin K D, Vale L R and Lehnert K W 2008 Appl. Phys. Lett. 92 023514
[79] Hirayama F, Kohjiro S, Fukuda D, Yamamori H, Nagasawa S and Hidaka M 2013 IEEE Trans. Appl. Supercond. 23 2500405
[80] Kohjiro S, Hirayama F, Yamamori H, Nagasawa S, Fukuda D and Hidaka M 2014 J. Appl. Phys. 115 223902
[81] Dober B, Becker D T, Bennett D A, Bryan S A, Duff S M, Gard J D, Hays-Wehle J P, Hilton G C, Hubmayr J, Mates J A B, Reintsema C D, Vale L R and Ullom J N 2017 Appl. Phys. Lett. 111 243510
[82] Mates J A B, Irwin K D, Vale L R, Hilton G C, Gao J and Lehnert K W 2012 J. Low Temp. Phys. 167 707
[83] Karcher N, Richter D, Ahrens F, Gartmann R, Wegner M, Krömer O, Kempf S, Enss C, Weber M and Sander O 2020 J. Low Temp. Phys. 200 261
[84] Mates J A B, Becker D T, Bennett D A, Dober B J, Gard J D, Hilton G C, Swetz D S, Vale L R and Ullom J N 2019 Appl. Phys. Lett. 115 202601
[85] Hirayama F, Irimatsugawa T, Yamamori H, Kohjiro S, Sato A, Nagasawa S, Fukuda D, Sasaki H, Hidaka M, Sato Y, Ohno M and Takahashi H 2017 IEEE Trans. Appl. Supercond. 27 2500205
[86] Gard J D, Becker D T, Bennett D A, Fowler J W, Hilton G C, Mates J A B, Reintsema C D, Schmidt D R, Swetz D S and Ullom J N 2018 J. Low Temp. Phys. 193 485
[87] Irwin K D and Lehnert K W 2004 Appl. Phys. Lett. 85 2107
[88] Mates J A B, Becker D T, Bennett D A, Dober B J, Gard J D, Hays-Wehle J P, Fowler J W, Hilton G C, Reintsema C D, Schmidt D R, Swetz D S, Vale L R and Ullom J N 2017 Appl. Phys. Lett. 111 062601
[89] Nakashima Y, Hirayama F, Kohjiro S, Yamamori H, Nagasawa S, Sato A, Yamada S, Hayakawa R, Yamasaki N Y, Mitsuda K, Nagayoshi K, Akamatsu H, Gottardi L, Taralli E, Bruijn M P, Ridder M L, Gao J R and den Herder J W A 2020 Appl. Phys. Lett. 117 122601
[90] Nakada N, Hattori K, Nakashima Y, Hirayama F, Yamamoto R, Yamamori H, Kohjiro S, Sato A, Takahashi H and Fukuda D 2020 J. Low Temp. Phys. 199 206
[91] Dober B, Ahmed Z, Arnold K, Becker D T, Bennett D A, Connors J A, Cukierman A, D'Ewart J M, Duff S M, Dusatko J E, Frisch J C, Gard J D, Henderson S W, Herbst R, Hilton G C, Hubmayr J, Li Y, Mates J A B, McCarrick H, Reintsema C D, Silva-Feaver M, Ruckman L, Ullom J N, Vale L R, Van Winkle D D, Vasquez J, Wang Y, Young E, Yu C and Zheng K 2021 Appl. Phys. Lett. 118 062601
[1] Low-Tc direct current superconducting quantum interference device magnetometer-based 36-channel magnetocardiography system in a magnetically shielded room
Qiu Yang (邱阳), Li Hua (李华), Zhang Shu-Lin (张树林), Wang Yong-Liang (王永良), Kong Xiang-Yan (孔祥燕), Zhang Chao-Xiang (张朝祥), Zhang Yong-Sheng (张永升), Xu Xiao-Feng (徐小峰), Yang Kang (杨康), Xie Xiao-Ming (谢晓明). Chin. Phys. B, 2015, 24(7): 078501.
[2] Study on signal intensity of low field nuclear magnetic resonance via indirect coupling measurement
Jiang Feng-Ying (蒋凤英), Wang Ning (王宁), Jin Yi-Rong (金贻荣), Deng Hui (邓辉), Tian Ye (田野), Lang Pei-Lin (郎佩琳), Li Jie (李洁), Chen Ying-Fei (陈莺飞), Zheng Dong-Ning (郑东宁). Chin. Phys. B, 2013, 22(4): 047401.
[3] Quantum search via superconducting quantum interference devices in a cavity
Lu Yan(卢艳), Dong Ping(董萍), Xue Zheng-Yuan(薛正远), and Cao Zhuo-Liang(曹卓良). Chin. Phys. B, 2007, 16(12): 3601-3604.
No Suggested Reading articles found!