Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(7): 078702    DOI: 10.1088/1674-1056/ac4f4e

Pulse coding off-chip learning algorithm for memristive artificial neural network

Ming-Jian Guo(郭明健), Shu-Kai Duan(段书凯), and Li-Dan Wang(王丽丹)
College of Artificial Intelligence, Southwest University, Chongqing 400715, China
Abstract  Memristive neural network has attracted tremendous attention since the memristor array can perform parallel multiply-accumulate calculation (MAC) operations and memory-computation operations as compared with digital CMOS hardware systems. However, owing to the variability of the memristor, the implementation of high-precision neural network in memristive computation units is still difficult. Existing learning algorithms for memristive artificial neural network (ANN) is unable to achieve the performance comparable to high-precision by using CMOS-based system. Here, we propose an algorithm based on off-chip learning for memristive ANN in low precision. Training the ANN in the high-precision in digital CPUs and then quantifying the weight of the network to low precision, the quantified weights are mapped to the memristor arrays based on VTEAM model through using the pulse coding weight-mapping rule. In this work, we execute the inference of trained 5-layers convolution neural network on the memristor arrays and achieve an accuracy close to the inference in the case of high precision (64-bit). Compared with other algorithms-based off-chip learning, the algorithm proposed in the present study can easily implement the mapping process and less influence of the device variability. Our result provides an effective approach to implementing the ANN on the memristive hardware platform.
Keywords:  off-chip learning      mapping      memristor array      artificial neural network  
Received:  08 December 2021      Revised:  18 January 2022      Accepted manuscript online:  27 January 2022
PACS:  87.18.Sn (Neural networks and synaptic communication)  
  07.05.Rm (Data presentation and visualization: algorithms and implementation)  
  07.05.Tp (Computer modeling and simulation)  
  07.05.Mh (Neural networks, fuzzy logic, artificial intelligence)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62076208, 62076207, and U20A20227) and the National Key Research and Development Program of China (Grant No. 2018YFB1306600).
Corresponding Authors:  Li-Dan Wang     E-mail:

Cite this article: 

Ming-Jian Guo(郭明健), Shu-Kai Duan(段书凯), and Li-Dan Wang(王丽丹) Pulse coding off-chip learning algorithm for memristive artificial neural network 2022 Chin. Phys. B 31 078702

[1] Uijlings J R R, van de Sande K E A, Gevers T and Smeulders A W M 2013 International Journal of Computer Vision 104 154
[2] Richardson F, Reynolds D and Dehak N 2015 IEEE Signal Processing Letters 22 1671
[3] LeCun Y, Bengio Y and Hinton G 2015 Nature 521 436
[4] Li C, Hu M, Li Y, Jiang H, Ge N, Montgomery E, Zhang J, Song W, Davila N, Graves C E, Li Z, Strachan J P, Lin P, Wang Z, Barnell M, Wu Q, Williams R S, Yang J J and Xia Q 2018 Nat. Electron. 1 52
[5] Coates A, Huval B, Wang T, Wu D J, Ng A Y and Catanzaro B 2013 30th International Conference on Machine Learning, (ICML 2013), June 16-21, 2013, Atlanta, USA, p. 2374
[6] Jouppi N P, Young C and Patil N 2017 44th Annual International Symposium on Computer Architecture (ISCA 2017), June 24-28, 2017, Toronto, Canada, p. 1
[7] Chen Y H, Krishna T, Emer J S and Sze V 2017 IEEE Journal of Solid-State Circuits 52 127
[8] Zidan M A, Strachan J P and Lu W D 2018 Nat. Electron. 1 22
[9] Boschker J E and Calarco R 2017 Adv. Phys. X 2 675
[10] Boybat I, Le Gallo M, Nandakumar S R, Moraitis T, Parnell T, Tuma T, Rajendran B, Leblebici Y, Sebastian A and Eleftheriou E 2018 Nat. Commun. 9 2514
[11] Indiveri G, Linares-Barranco B, Legenstein R, Deligeorgis G and Prodromakis T 2013 Nanotechnology 24 384010
[12] Chua L O 1971 IEEE Transactions on Circuit Theory CT18 507
[13] Shang L, Duan S, Wang L and Huang T 2018 IEEE Transactions on Very Large Scale Integration (Vlsi) Systems 26 2830
[14] Li Y, Li J, Li J, Duan S, Wang L and Guo M 2021 Neurocomputing 454 382
[15] Strukov D B, Snider G S, Stewart D R and Williams R S 2008 Nature 453 80
[16] Yu F, Zhang Z, Shen H, Huang Y, Cai S and Du S 2021 Chin. Phys. B 1088 152
[17] Xu Q, Ju Z, Ding S, Feng C, Chen M and Bao B 2021 Cognitive Neurodynamics 1007 64
[18] Le Gallo M, Sebastian A, Mathis R, Manica M, Giefers H, Tuma T, Bekas C, Curioni A and Eleftheriou E 2018 Nat. Electron. 1 246
[19] Prezioso M, Merrikh-Bayat F, Hoskins B D, Adam G C, Likharev K K and Strukov D B 2015 Nature 521 61
[20] Chen J, Wang L and Duan S 2021 Neurocomputing 461 129
[21] Li C, Belkin D, Li Y, Yan P, Hu M, Ge N, Jiang H, Montgomery E, Lin P and Wang Z 2018 Nat. Commun. 9 1
[22] Yao P, Wu H, Gao B, Eryilmaz S B, Huang X, Zhang W, Zhang Q, Deng N, Shi L and Wong H S P 2017 Nat. Commun. 8 1
[23] Gao B, Bi Y, Chen H Y, Liu R, Huang P, Chen B, Liu L, Liu X, Yu S, Wong H S P and Kang J 2014 Acs Nano 8 6998
[24] Jo S H, Chang T, Ebong I, Bhadviya B B, Mazumder P and Lu W 2010 Nano Lett. 10 1297
[25] Hu M, Li H, Wu Q, Rose G S and Chen Y 2012 The International Joint Conference on Neural Networks (IJCNN), 2012, p. 1
[26] Li B, Shan Y, Hu M, Wang Y, Chen Y and Yang H 2013 International Symposium on Low Power Electronics and Design (ISLPED), 2013, p. 242
[27] Zhang Q, Wu H, Yao P, Zhang W, Gao B, Deng N and Qian H 2018 Neural Networks 108 217
[28] Lim S, Bae J H, Eum J H, Lee S, Kim C H, Kwon D, Park B G and Lee J H 2019 Neural Computing & Applications 31 8101
[29] Merrikh-Bayat F, Guo X, Klachko M, Prezioso M, Likharev K K and Strukov D B 2018 IEEE Transactions on Neural Networks and Learning Systems 29 4782
[30] Hikawa H, Tamaki M and Ito H 2018 IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences E101A 499
[31] Wong H S P, Lee H Y, Yu S, Chen Y S, Wu Y, Chen P S, Lee B, Chen F T and Tsai M J 2012 Proc. IEEE 100 1951
[32] Zamanidoost E, Klachko M, Strukov D and Kataeva I 2015 Proceedings of the IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH'15) 2015, p. 139
[33] Chi P, Li S, Xu C, Zhang T, Zhao J, Liu Y, Wang Y and Xie Y 2016 "PRIME:A Novel Processing-in-Memory Architecture for Neural Network Computation in ReRAM-Based Main Memory", in:2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA), p. 27
[34] Wang Z, Wu H, Burr G W, Hwang C S, Wang K L, Xia Q and Yang J J 2020 Nat. Rev. Mater. 5 173
[35] Kvatinsky S, Ramadan M, Friedman E G and Kolodny A 2015 IEEE Transactions on Circuits and Systems II-Express Briefs 62 786
[1] A novel algorithm to analyze the dynamics of digital chaotic maps in finite-precision domain
Chunlei Fan(范春雷) and Qun Ding(丁群). Chin. Phys. B, 2023, 32(1): 010501.
[2] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[3] Parameter estimation of continuous variable quantum key distribution system via artificial neural networks
Hao Luo(罗浩), Yi-Jun Wang(王一军), Wei Ye(叶炜), Hai Zhong(钟海), Yi-Yu Mao(毛宜钰), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(2): 020306.
[4] Stationary response of colored noise excited vibro-impact system
Jian-Long Wang(王剑龙), Xiao-Lei Leng(冷小磊), and Xian-Bin Liu(刘先斌). Chin. Phys. B, 2021, 30(6): 060501.
[5] Hybrid vector beams with non-uniform orbital angular momentum density induced by designed azimuthal polarization gradient
Lei Han(韩磊), Shuxia Qi(齐淑霞), Sheng Liu(刘圣), Peng Li(李鹏), Huachao Cheng(程华超), Jianlin Zhao(赵建林). Chin. Phys. B, 2020, 29(9): 094203.
[6] Quasi-canonicalization for linear homogeneous nonholonomic systems
Yong Wang(王勇), Jin-Chao Cui(崔金超), Ju Chen(陈菊), Yong-Xin Guo(郭永新). Chin. Phys. B, 2020, 29(6): 064501.
[7] Uncovering the internal structure of five-fold twinned nanowires through 3D electron diffraction mapping
Xin Fu(付新). Chin. Phys. B, 2020, 29(6): 068101.
[8] Artificial neural network potential for gold clusters
Ling-Zhi Cao(曹凌志), Peng-Ju Wang(王鹏举), Lin-Wei Sai(赛琳伟), Jie Fu(付洁), and Xiang-Mei Duan(段香梅). Chin. Phys. B, 2020, 29(11): 117304.
[9] Modeling electric field of power metal-oxide-semiconductor field-effect transistor with dielectric trench based on Schwarz-Christoffel transformation
Zhi-Gang Wang(汪志刚), Tao Liao(廖涛), Ya-Nan Wang(王亚南). Chin. Phys. B, 2019, 28(5): 058503.
[10] Weighted total variation using split Bregman fast quantitative susceptibility mapping reconstruction method
Lin Chen(陈琳), Zhi-Wei Zheng(郑志伟), Li-Jun Bao(包立君), Jin-Sheng Fang(方金生), Tian-He Yang(杨天和), Shu-Hui Cai(蔡淑惠), Cong-Bo Cai(蔡聪波). Chin. Phys. B, 2018, 27(8): 088701.
[11] Image reconstruction for cone-beam computed tomography using total p-variation plus Kullback–Leibler data divergence
Ai-Long Cai(蔡爱龙), Lei Li(李磊), Lin-Yuan Wang(王林元), Bin Yan(闫镔), Zhi-Zhong Zheng(郑治中), Han-Ming Zhang(张瀚铭), Guo-En Hu(胡国恩). Chin. Phys. B, 2017, 26(7): 078701.
[12] Analytical capacitance model for 14 nm FinFET considering dual-k spacer
Fang-Lin Zheng(郑芳林), Cheng-Sheng Liu(刘程晟), Jia-Qi Ren(任佳琪), Yan-Ling Shi(石艳玲), Ya-Bin Sun(孙亚宾), Xiao-Jin Li(李小进). Chin. Phys. B, 2017, 26(7): 077303.
[13] In-situ wafer bowing measurements of GaN grown on Si (111) substrate by reflectivity mapping in metal organic chemical vapor deposition system
Yang Yi-Bin (杨亿斌), Liu Ming-Gang (柳铭岗), Chen Wei-Jie (陈伟杰), Han Xiao-Biao (韩小标), Chen Jie (陈杰), Lin Xiu-Qi (林秀其), Lin Jia-Li (林佳利), Luo Hui (罗慧), Liao Qiang (廖强), Zang Wen-Jie (臧文杰), Chen Yin-Song (陈崟松), Qiu Yun-Ling (邱运灵), Wu Zhi-Sheng (吴志盛), Liu Yang (刘扬), Zhang Bai-Jun (张佰君). Chin. Phys. B, 2015, 24(9): 096103.
[14] Grazing bifurcation analysis of a relative rotation system with backlash non-smooth characteristic
Liu Shuang (刘爽), Wang Zhao-Long (王兆龙), Zhao Shuang-Shuang (赵双双), Li Hai-Bin (李海滨), Li Jian-Xiong (李建雄). Chin. Phys. B, 2015, 24(7): 074501.
[15] Mapping equivalent approach to analysis and realization of memristor-based dynamical circuit
Bao Bo-Cheng (包伯成), Hu Feng-Wei (胡丰伟), Liu Zhong (刘中), Xu Jian-Ping (许建平). Chin. Phys. B, 2014, 23(7): 070503.
No Suggested Reading articles found!