Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(10): 100503    DOI: 10.1088/1674-1056/aba5fd
General Prev   Next  

Broadband energy harvesting based on one-to-one internal resonance

Wen-An Jiang(姜文安)1, Xin-Dong Ma(马新东)1, Xiu-Jing Han(韩修静)1,†, Li-Qun Chen(陈立群)2,3, and Qin-Sheng Bi(毕勤胜)1
1 Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang 212013, China
2 School of Science, Harbin Institute of Technology, Shenzhen 518055, China
3 Department of Mechanics, Shanghai University, Shanghai 200072, China
Abstract  

We design an electromechanical transducer harvesting system with one-to-one internal resonance that can emerge a broader spectrum vibrations. The novel harvester is composed of a Duffing electrical circuit coupled to a mobile rod, and the coupling between both components is realized via the electromagnetic force. Approximate analytical solutions of the electromechanical system are carried out by introducing the multiple scales analysis, also the nonlinear modulation equation for one-to-one internal resonance is obtained. The character of broadband harvesting performance are analyzed, the two peaks and one jump phenomenon bending to the right for variation of control parameters are observed. It is shown that an advanced bandwidth over a corresponding linear model that does not possess a modal energy interchange.

Keywords:  energy harvesting      internal resonance      broadband      nonlinear modal interactions  
Received:  14 April 2020      Revised:  06 July 2020      Accepted manuscript online:  15 July 2020
PACS:  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  77.65.-j (Piezoelectricity and electromechanical effects)  
Corresponding Authors:  Corresponding author. E-mail: xjhan@mail.ujs.edu.cn   
About author: 
†Corresponding author. E-mail: xjhan@mail.ujs.edu.cn
* Project supported by the National Natural Science Foundation of China (Grant Nos. 11632008 and 11702119), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20170565), China Postdoctoral Science Foundation (Grant No. 2020M671353), and Jiangsu Planned Projects for Postdoctoral Research Funds, China (Grant No. 2020Z376).

Cite this article: 

Wen-An Jiang(姜文安), Xin-Dong Ma(马新东), Xiu-Jing Han(韩修静)†, Li-Qun Chen(陈立群), and Qin-Sheng Bi(毕勤胜) Broadband energy harvesting based on one-to-one internal resonance 2020 Chin. Phys. B 29 100503

Fig. 1.  

Schematic diagram of the electromechanical transducer vibratory energy harvesters.

Fig. 2.  

Model of nonlinear capacitor.[42]

Fig. 3.  

Frequency-resonance curves for different amplitudes of voltage source.

Fig. 4.  

Frequency-resonance curves for different cubic nonlinear coefficients.

Fig. 5.  

Frequency-resonance curves for different resistors R1.

Fig. 6.  

Frequency-resonance curves for different damping coefficients.

Fig. 7.  

Frequency-resonance curves for different magnetic strengths B1.

Fig. 8.  

Frequency-resonance curves for different magnetic strengths B2.

Fig. 9.  

Comparison of the internal resonance and the linear results.

Fig. 10.  

Comparison of the analytical and the numerical results.

[1]
Challa V, Prasad M, Shi Y, Fisher F 2008 Smart Mater. Struct. 75 015035
[2]
Shahruz S M 2006 J. Sound Vib. 292 987 DOI: 10.1016/j.jsv.2005.08.018
[3]
Fan K Q, Xu C H, Wang W D, Fang Y 2014 Chin. Phys. B 23 084501 DOI: 10.1088/1674-1056/23/8/084501
[4]
Li H T, Qin W Y 2016 Chin. Phys. B 25 110503 DOI: 10.1088/1674-1056/25/11/110503
[5]
Zhang Y W, Wang C, Yuan B, Fang B 2017 Shock Vib. 1987456 1
[6]
Yan Z M, Hajj M 2017 J. Intel. Mat. Syst. Str. 28 254 DOI: 10.1177/1045389X16649450
[7]
Cao D X, Gao Y H, Hu W H 2019 Acta Mech. Sinica 35 894 DOI: 10.1007/s10409-019-00852-3
[8]
Tan T, Yan Z M, Zou Y J, Zhang W M 2019 Mech. Syst. Signal Pr. 123 513 DOI: 10.1016/j.ymssp.2019.01.004
[9]
Jiang W A, Sun P, Zhao G L, Chen L Q 2019 Appl. Math. Mech. -Engl. Ed. 40 579 DOI: 10.1007/s10483-019-2467-8
[10]
Guo X Y, Wang S B, Sun L, Cao D X 2020 Acta Mech. Sinica 36 234 DOI: 10.1007/s10409-019-00923-5
[11]
Cottone F, Vocca H, Gammaitoni L 2009 Phys. Rev. Lett. 102 080601 DOI: 10.1103/PhysRevLett.102.080601
[12]
Wang G Y, Tang L H 2017 Mech. Syst. Signal Pr. 86 29 DOI: 10.1016/j.ymssp.2016.10.001
[13]
Zou H X, Zhang W M, Wei K X, Li W B, Peng Z K, Meng G 2016 J. Appl. Mech. 83 121005 DOI: 10.1115/1.4034563
[14]
Lan C B, Qin W Y 2017 Mech. Syst. Signal Pr. 85 71 DOI: 10.1016/j.ymssp.2016.07.047
[15]
Zhou Z Y, Qin W Y, Du W F, Zhu P, Liu Q 2019 Mech. Syst. Signal Pr. 115 162 DOI: 10.1016/j.ymssp.2018.06.003
[16]
Cao J Y, Zhou S X, Wang W, Lin J 2015 Appl. Phys. Lett. 106 173903 DOI: 10.1063/1.4919532
[17]
Zhou Z Y, Qin W Y, Zhu P 2017 Mech. Syst. Signal Pr. 84 158 DOI: 10.1016/j.ymssp.2016.07.001
[18]
Wang B, Zhang Q C, Wang W, Feng J J 2018 Mech. Syst. Signal Pr. 112 305 DOI: 10.1016/j.ymssp.2018.04.027
[19]
Yang S, Cao Q J 2019 J. Stat. Mech.-Theory E 033405
[20]
Li H T, Qin W Y 2015 Nonlinear Dyn. 81 1751 DOI: 10.1007/s11071-015-2104-3
[21]
Li H T, Qin W Y, Lan C B, Deng W Z, Zhou Z Y 2016 Smart Mater. Struct. 25 015001 DOI: 10.1088/0964-1726/25/1/015001
[22]
Chen L Q, Jiang W A 2015 J. Appl. Mech. 82 031004 DOI: 10.1115/1.4029606
[23]
Cao D X, Leadenham S, Erturk A 2015 Eur. Phys. J. Special Topics 224 2867 DOI: 10.1140/epjst/e2015-02594-4
[24]
Jiang W A, Chen L Q, Ding H 2016 Nonlinear Dyn. 85 2507 DOI: 10.1007/s11071-016-2841-y
[25]
Chen L Q, Jiang W A, Panyam M, Daqaq M F 2016 J. Acoust Vib. 138 061007 DOI: 10.1115/1.4034253
[26]
Wu Y P, Ji H L, Qiu J H, Han L 2017 Sens. Actuators A-Phys. 264 1 DOI: 10.1016/j.sna.2017.06.029
[27]
Yang W, Towfighian S 2017 Smart Mater. Struct. 26 095008 DOI: 10.1088/1361-665X/aa791d
[28]
Yang W, Towfighian S 2017 Mech. Syst. Signal Pr. 90 317 DOI: 10.1016/j.ymssp.2016.12.032
[29]
Rocha R T, Balthazar J M, Tusset A M, Piccirillo V, Felix J L P 2017 Meccanica 52 2583 DOI: 10.1007/s11012-017-0633-1
[30]
Xiong L Y, Tang L T, Mace B R 2018 Nonlinear Dyn. 91 1817 DOI: 10.1007/s11071-017-3982-3
[31]
Liu H J, Gao X M 2019 Nonlinear Dyn. 96 1067 DOI: 10.1007/s11071-019-04839-4
[32]
Nie X C, Tan T, Yan Z M, Yan Z T, Hajj M R 2019 Int. J. Mech. Sci. 159 287 DOI: 10.1016/j.ijmecsci.2019.06.009
[33]
Pan J N, Qin W Y, Deng W Z, Zhou H L 2019 Chin. Phys. B 28 017701 DOI: 10.1088/1674-1056/28/1/017701
[34]
Tcheutchoua F D, Woafo P 2011 J. Vib. Acoust. 133 061018 DOI: 10.1115/1.4004938
[35]
Jerrelind J, Stensson A 2000 Chaos Solit. Fract. 11 2413 DOI: 10.1016/S0960-0779(00)00016-3
[36]
Wang Z, Chau K T 2008 Chaos Solit. Fract. 36 694 DOI: 10.1016/j.chaos.2006.06.105
[37]
Zhang H, Chen D, Xu B, Wang F 2015 Energy Convers. Manage. 90 128 DOI: 10.1016/j.enconman.2014.11.020
[38]
Yamapi R, Orou J B, Woafo P 2003 J. Sound Vib. 259 1253 DOI: 10.1006/jsvi.2002.5289
[39]
Mogo J B, Woafo P 2007 J. Comput. Nonlinear Dyn. 2 374
[40]
Kitio KC A, Nana B, Woafo P 2010 J. Sound Vib. 329 3137 DOI: 10.1016/j.jsv.2010.02.003
[41]
Domguia U S, Abobda L T, Woafo P 2016 J. Comput. Nonlin. Dyn. 11 051006
[42]
Simo H, Woafo P 2011 Mech. Res. Commun. 38 537 DOI: 10.1016/j.mechrescom.2011.07.007
[43]
Emam S A, Nayfeh A H 2013 Int. J. Nonlin. Mech. 52 12 DOI: 10.1016/j.ijnonlinmec.2013.01.018
[44]
Zhang W, Yang J H, Zhang Y F, Yang S W 2019 Eng. Struct. 198 109501 DOI: 10.1016/j.engstruct.2019.109501
[45]
Zhang W, Liu Y Z, Wu M Q 2019 Compos. Struct. 225 111140 DOI: 10.1016/j.compstruct.2019.111140
[46]
Zhang Y F, Zhang W, Yao Z G 2018 Eng. Struct. 173 89 DOI: 10.1016/j.engstruct.2018.04.100
[47]
Yao M H, Ma L, Zhang W 2018 Sci. Chin. E 61 1404 DOI: 10.1007/s11431-017-9179-0
[48]
Yao M H, Zhang W, Yao Z G 2015 J. Vib. Acoust. 137 011002 DOI: 10.1115/1.4028710
[49]
Zhang W, Zhang J H, Yao M H, Yao Z G 2010 Acta Mech. 211 23 DOI: 10.1007/s00707-009-0210-3
[50]
Zhang W, Yao Z G, Yao M H 2009 Sci. China Ser. E 52 731 DOI: 10.1007/s11431-009-0051-2
[51]
Zhang W, Zhao M H 2012 Nonlinear Dyn. 70 295 DOI: 10.1007/s11071-012-0455-6
[52]
Nathamgari S P, Dong S Y, Medina L 2019 Nano Lett. 19 4052 DOI: 10.1021/acs.nanolett.9b01442
[1] Bidirectional visible light absorber based on nanodisk arrays
Qi Wang(王琦), Fei-Fan Zhu(朱非凡), Rui Li(李瑞), Shi-Jie Zhang(张世杰), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2023, 32(3): 030205.
[2] Broadband low-frequency acoustic absorber based on metaporous composite
Jia-Hao Xu(徐家豪), Xing-Feng Zhu(朱兴凤), Di-Chao Chen(陈帝超), Qi Wei(魏琦), and Da-Jian Wu(吴大建). Chin. Phys. B, 2022, 31(6): 064301.
[3] Design of a polarization splitter for an ultra-broadband dual-core photonic crystal fiber
Yongtao Li(李永涛), Jiesong Deng(邓洁松), Zhen Yang(阳圳), Hui Zou(邹辉), and Yuzhou Ma(马玉周). Chin. Phys. B, 2022, 31(5): 054215.
[4] Micro thermoelectric devices: From principles to innovative applications
Qiulin Liu(刘求林), Guodong Li(李国栋), Hangtian Zhu(朱航天), and Huaizhou Zhao(赵怀周). Chin. Phys. B, 2022, 31(4): 047204.
[5] Ultra-broadband absorber based on cascaded nanodisk arrays
Qi Wang(王琦), Rui Li(李瑞), Xu-Feng Gao(高旭峰), Shi-Jie Zhang(张世杰), Rui-Jin Hong(洪瑞金), Bang-Lian Xu(徐邦联), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2022, 31(4): 040203.
[6] High-efficiency unidirectional wavefront manipulation for broadband airborne sound with a planar device
Yang Tan(谭杨), Bin Liang(梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(3): 034303.
[7] A broadband self-powered UV photodetector of a β-Ga2O3/γ-CuI p-n junction
Wei-Ming Sun(孙伟铭), Bing-Yang Sun(孙兵阳), Shan Li(李山), Guo-Liang Ma(麻国梁), Ang Gao(高昂), Wei-Yu Jiang(江为宇), Mao-Lin Zhang(张茂林), Pei-Gang Li(李培刚), Zeng Liu(刘增), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2022, 31(2): 024205.
[8] Design and optimization of a nano-antenna hybrid structure for solar energy harvesting application
Mohammad Javad Rabienejhad, Mahdi Davoudi-Darareh, and Azardokht Mazaheri. Chin. Phys. B, 2021, 30(9): 098503.
[9] Broadband topological valley-projected edge-states transport in composite structure phononic crystal
Hong-Yong Mao(毛鸿勇), Fu-Jia Chen(陈福家), Kai Guo(郭凯), and Zhong-Yi Guo(郭忠义). Chin. Phys. B, 2021, 30(8): 084302.
[10] A radar-infrared compatible broadband absorbing surface: Design and analysis
Qing-Tao Yu(余庆陶), Yuan-Song Zeng(曾元松), and Guo-Jia Ma(马国佳). Chin. Phys. B, 2021, 30(7): 078402.
[11] Solar broadband metamaterial perfect absorber based on dielectric resonant structure of Ge cone array and InAs film
Kuang-Ling Guo(郭匡灵), Hou-Hong Chen(陈厚宏), Xiao-Ming Huang(黄晓明), Tian-Hui Hu(胡天惠), and Hai-Ying Liu(刘海英). Chin. Phys. B, 2021, 30(11): 114201.
[12] Broadband asymmetric transmission for linearly and circularly polarization based on sand-clock structured metamaterial
Tao Fu(傅涛), Xing-Xing Liu(刘兴兴), Guo-Hua Wen(文国华), Tang-You Sun(孙堂友), Gong-Li Xiao(肖功利), and Hai-Ou Li(李海鸥). Chin. Phys. B, 2021, 30(1): 014201.
[13] Flexible broadband polarization converter based on metasurface at microwave band
Qi Wang(王奇), Xiangkun Kong(孔祥鲲), Xiangxi Yan(严祥熙), Yan Xu(徐岩), Shaobin Liu(刘少斌), Jinjun Mo(莫锦军), Xiaochun Liu(刘晓春). Chin. Phys. B, 2019, 28(7): 074205.
[14] Progress in quantum well and quantum cascade infrared photodetectors in SITP
Xiaohao Zhou(周孝好), Ning Li(李宁), Wei Lu(陆卫). Chin. Phys. B, 2019, 28(2): 027801.
[15] Cascaded plasmonic nanorod antenna for large broadband local electric field enhancement
Dou Zhang(张豆), Zhong-Jian Yang(杨中见), Jun He(何军). Chin. Phys. B, 2019, 28(10): 107802.
No Suggested Reading articles found!