Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(8): 084207    DOI: 10.1088/1674-1056/ab943b
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Low-power electro-optic phase modulator based on multilayer graphene/silicon nitride waveguide

Lanting Ji(姬兰婷)1,2, Wei Chen(陈威)1, Yang Gao(高阳)1, Yan Xu(许言)1, Chi Wu(吴锜)2, Xibin Wang(王希斌)1, Yunji Yi(衣云骥)1, Baohua Li(李宝华)1, Xiaoqiang Sun(孙小强)1, Daming Zhang(张大明)1
1 State Key Laboratory of Integrated Optoelectronics, College of Electronic Science&Engineering, Jilin University, Changchun 130012, China;
2 Institute of Marine Science and Technology, Shandong University, Qingdao 250100, China
Abstract  Electro-optic modulator is a key component for on-chip optical signal processing. An electro-optic phase modulator based on multilayer graphene embedded in silicon nitride waveguide is demonstrated to fulfill low-power operation. Finite element method is adopted to investigate the interaction enhancement between the graphene flake and the optical mode. The impact of multilayer graphene on the performance of phase modulator is studied comprehensively. Simulation results show that the modulation efficiency improves with the increment of graphene layer number, as well as the modulation length. The 3-dB bandwidth of around 48 GHz is independent of graphene layer number and length. Compared to modulator with two-or four-layer graphene, the six-layer graphene/silicon nitride waveguide modulator can realize π phase shift at a low-power consumption of 14 fJ/bit when the modulation length is 240 μm.
Keywords:  electro-optic modulator      graphene      silicon nitride      waveguide  
Received:  13 February 2020      Revised:  02 April 2020      Accepted manuscript online: 
PACS:  42.79.Hp (Optical processors, correlators, and modulators)  
  42.79.Gn (Optical waveguides and couplers)  
  78.67.Wj (Optical properties of graphene)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2019YFB2203001), the National Natural Science Foundation of China (Grant Nos. 61675087, 61875069, and 61605057), and the Science and Technology Development Plan of Jilin Province, China (Grant No. JJKH20190118KJ).
Corresponding Authors:  Xiaoqiang Sun     E-mail:  sunxq@jlu.edu.cn

Cite this article: 

Lanting Ji(姬兰婷), Wei Chen(陈威), Yang Gao(高阳), Yan Xu(许言), Chi Wu(吴锜), Xibin Wang(王希斌), Yunji Yi(衣云骥), Baohua Li(李宝华), Xiaoqiang Sun(孙小强), Daming Zhang(张大明) Low-power electro-optic phase modulator based on multilayer graphene/silicon nitride waveguide 2020 Chin. Phys. B 29 084207

[1] Janner D, Lucchi F and Belmonte M 2007 Opt. Express 15 10739
[2] Pérez-Galacho D, Marris-Morini D and Stoffer R 2016 Opt. Express 24 26332
[3] Krishnamoorthy A V, Luff B J and Bijlani B 2012 Opt. Express 20 22224
[4] Sun X, Zhou L and Li X 2011 Appl. Opt. 50 3428
[5] Xiu C L, Shan W H and Xin J C 2019 Acta Phys. Sin. 68 168102(in Chinese)
[6] Mo J W, Qiu Y W and Yi R B 2019 Acta Phys. Sin. 68 156501(in Chinese)
[7] Wu C C, Guo X D and Hu H 2019 Acta Phys. Sin. 68 148103(in Chinese)
[8] Koziol Z, Gawlik G and Jagielski J 2019 Chin. Phys. B 28 096101
[9] Li M, Qu G F and Wang Y Z 2019 Chin. Phys. B 28 093401
[10] Zhang X F, Liu Z H and Liu W L 2019 Chin. Phys. B 28 086103
[11] Fan C, Tian Y and Ren P 2019 Chin. Phys. B 28 076105
[12] Sun Z, Hasan T and Torrisi F 2010 ACS Nano 4 803
[13] Avouris P and Freitag M 2014 IEEE J. Sel. Top. Quantum Electron. 20 6000112
[14] Shi K, Zhao W and Lu Z 2013 Opt. Lett. 38 4342
[15] Xie C, Wang Y and Zhang Z X 2018 Nano Today 19 41
[16] Wu Z and Xu Y 2018 Appl. Opt. 57 3260
[17] Ye S W, Yuan F and Zou X H 2017 IEEE J. Sel. Top. Quantum Electron. 23 3400105
[18] Liu M, Yin X and Ulin-Avila E 2011 Nature 474 64
[19] Yang L, Hu T and Hao R 2013 Opt. Lett. 38 2512
[20] Liu M, Yin X and Zhang X 2012 Nano. Lett. 12 1482
[21] Hu Y, Pantouvaki M and Campenhout J 2016 Laser Photon. Rev. 10 307
[22] Mohsin M, Schall D and Otto M 2014 Opt. Express 22 15292
[23] Ji L, Zhang D and Xu Y 2013 IEEE Photon. J. 11 7800911
[24] Phatak A, Qin C and Goda K 2016 Opt. Lett. 41 2501
[25] Gosciniak J and Tan D T 2013 Nanotechnology 24 185202
[26] Mohsin M, Neumaier D and Schall D 2015 Sci. Rep. 5 10967
[27] Rodriguez S B, Yan R and Kelly M 2012 Nat. Commun. 3 780
[28] Phare C T, Y H Daniel Lee and Cardenas J 2015 Nat. Photon. 9 511
[29] Fan M, Yang H and Zheng P 2017 Opt. Express 25 21619
[30] Zhang X, Zhang Y B and Xiong C 2016 J. Opt. 18 074016
[31] Feng J and Akimoto R 2014 IEEE Photon. Tech. Lett. 26 706
[32] Bauters J F, Heck M J R and John D D 2011 Opt. Express 19 24090
[33] Shiramin L A and Thourhout D V 2017 IEEE J. Sel. Top. Quantum Electron. 23 3600107
[34] Wang J, Cheng Z and Shu C 2015 IEEE Photon. Tech. Lett. 27 1765
[35] Sorianello V, Midrio M and Romagnoli M 2015 Opt. Express 23 6478
[36] Hu X, Zhang Y and Chen D 2019 J. Lightwave Technol. 37 2284
[37] Zhong H, Zhang Z and Chen B 2015 Nano Res. 8 1669
[38] Bao Q and Loh K P 2012 ACS Nano 6 3677
[39] Stauber T, Peres N M R and Geim A K 2008 Phys. Rev. B 78 085432
[40] Wülbern J H, Hampe J and Petrov A 2009 Appl. Phys. Lett. 94 241107
[41] Ji L, Gao Y and Xu Y 2018 IEEE J. Quantum Electron 54 5200107
[42] Yan J, Zhang Y and Kim P 2007 Phys. Rev. Lett. 98 166802
[43] Wang F, Zhang Y and Tian C 2008 Science 320 206
[44] Hwang C, Siegel D A and Mo S K 2012 Sci. Rep. 2 590
[45] Xu C, Jin Y and Yang L 2012 Opt. Express 20 22398
[46] Koester S J and Li M 2012 Appl. Phys. Lett. 100 171107
[47] Hu Y, Xiao X and Xu H 2012 Opt. Express 20 15079
[48] Cheng Z, Chen X and Wong C Y 2012 Opt. Lett. 37 1217
[49] Politi A, Cryan M J and Rarity J G 2008 Science 320 646
[50] Zhu X, Shi L and Schmidt M 2013 Nano Lett. 13 4690
[51] Zhu X, Yan W and Jepsen P U 2013 Appl. Phys. Lett. 102 131101
[52] Ding Y, Guan X and Zhu X 2017 Nanoscale 9 15576
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] Non-Markovianity of an atom in a semi-infinite rectangular waveguide
Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(3): 030305.
[4] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[5] Spontaneous emission of a moving atom in a waveguide of rectangular cross section
Jing Zeng(曾静), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(2): 020302.
[6] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[7] High gain and circularly polarized substrate integrated waveguide cavity antenna array based on metasurface
Hao Bai(白昊), Guang-Ming Wang(王光明), and Xiao-Jun Zou(邹晓鋆). Chin. Phys. B, 2023, 32(1): 014101.
[8] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[9] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[10] Second harmonic generation from precise diamond blade diced ridge waveguides
Hui Xu(徐慧), Ziqi Li(李子琦), Chi Pang(逄驰), Rang Li(李让), Genglin Li(李庚霖), Sh. Akhmadaliev, Shengqiang Zhou(周生强), Qingming Lu(路庆明), Yuechen Jia(贾曰辰), and Feng Chen(陈峰). Chin. Phys. B, 2022, 31(9): 094209.
[11] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[12] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[13] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[14] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[15] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
No Suggested Reading articles found!