ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Low-power electro-optic phase modulator based on multilayer graphene/silicon nitride waveguide |
Lanting Ji(姬兰婷)1,2, Wei Chen(陈威)1, Yang Gao(高阳)1, Yan Xu(许言)1, Chi Wu(吴锜)2, Xibin Wang(王希斌)1, Yunji Yi(衣云骥)1, Baohua Li(李宝华)1, Xiaoqiang Sun(孙小强)1, Daming Zhang(张大明)1 |
1 State Key Laboratory of Integrated Optoelectronics, College of Electronic Science&Engineering, Jilin University, Changchun 130012, China; 2 Institute of Marine Science and Technology, Shandong University, Qingdao 250100, China |
|
|
Abstract Electro-optic modulator is a key component for on-chip optical signal processing. An electro-optic phase modulator based on multilayer graphene embedded in silicon nitride waveguide is demonstrated to fulfill low-power operation. Finite element method is adopted to investigate the interaction enhancement between the graphene flake and the optical mode. The impact of multilayer graphene on the performance of phase modulator is studied comprehensively. Simulation results show that the modulation efficiency improves with the increment of graphene layer number, as well as the modulation length. The 3-dB bandwidth of around 48 GHz is independent of graphene layer number and length. Compared to modulator with two-or four-layer graphene, the six-layer graphene/silicon nitride waveguide modulator can realize π phase shift at a low-power consumption of 14 fJ/bit when the modulation length is 240 μm.
|
Received: 13 February 2020
Revised: 02 April 2020
Accepted manuscript online:
|
PACS:
|
42.79.Hp
|
(Optical processors, correlators, and modulators)
|
|
42.79.Gn
|
(Optical waveguides and couplers)
|
|
78.67.Wj
|
(Optical properties of graphene)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2019YFB2203001), the National Natural Science Foundation of China (Grant Nos. 61675087, 61875069, and 61605057), and the Science and Technology Development Plan of Jilin Province, China (Grant No. JJKH20190118KJ). |
Corresponding Authors:
Xiaoqiang Sun
E-mail: sunxq@jlu.edu.cn
|
Cite this article:
Lanting Ji(姬兰婷), Wei Chen(陈威), Yang Gao(高阳), Yan Xu(许言), Chi Wu(吴锜), Xibin Wang(王希斌), Yunji Yi(衣云骥), Baohua Li(李宝华), Xiaoqiang Sun(孙小强), Daming Zhang(张大明) Low-power electro-optic phase modulator based on multilayer graphene/silicon nitride waveguide 2020 Chin. Phys. B 29 084207
|
[1] |
Janner D, Lucchi F and Belmonte M 2007 Opt. Express 15 10739
|
[2] |
Pérez-Galacho D, Marris-Morini D and Stoffer R 2016 Opt. Express 24 26332
|
[3] |
Krishnamoorthy A V, Luff B J and Bijlani B 2012 Opt. Express 20 22224
|
[4] |
Sun X, Zhou L and Li X 2011 Appl. Opt. 50 3428
|
[5] |
Xiu C L, Shan W H and Xin J C 2019 Acta Phys. Sin. 68 168102(in Chinese)
|
[6] |
Mo J W, Qiu Y W and Yi R B 2019 Acta Phys. Sin. 68 156501(in Chinese)
|
[7] |
Wu C C, Guo X D and Hu H 2019 Acta Phys. Sin. 68 148103(in Chinese)
|
[8] |
Koziol Z, Gawlik G and Jagielski J 2019 Chin. Phys. B 28 096101
|
[9] |
Li M, Qu G F and Wang Y Z 2019 Chin. Phys. B 28 093401
|
[10] |
Zhang X F, Liu Z H and Liu W L 2019 Chin. Phys. B 28 086103
|
[11] |
Fan C, Tian Y and Ren P 2019 Chin. Phys. B 28 076105
|
[12] |
Sun Z, Hasan T and Torrisi F 2010 ACS Nano 4 803
|
[13] |
Avouris P and Freitag M 2014 IEEE J. Sel. Top. Quantum Electron. 20 6000112
|
[14] |
Shi K, Zhao W and Lu Z 2013 Opt. Lett. 38 4342
|
[15] |
Xie C, Wang Y and Zhang Z X 2018 Nano Today 19 41
|
[16] |
Wu Z and Xu Y 2018 Appl. Opt. 57 3260
|
[17] |
Ye S W, Yuan F and Zou X H 2017 IEEE J. Sel. Top. Quantum Electron. 23 3400105
|
[18] |
Liu M, Yin X and Ulin-Avila E 2011 Nature 474 64
|
[19] |
Yang L, Hu T and Hao R 2013 Opt. Lett. 38 2512
|
[20] |
Liu M, Yin X and Zhang X 2012 Nano. Lett. 12 1482
|
[21] |
Hu Y, Pantouvaki M and Campenhout J 2016 Laser Photon. Rev. 10 307
|
[22] |
Mohsin M, Schall D and Otto M 2014 Opt. Express 22 15292
|
[23] |
Ji L, Zhang D and Xu Y 2013 IEEE Photon. J. 11 7800911
|
[24] |
Phatak A, Qin C and Goda K 2016 Opt. Lett. 41 2501
|
[25] |
Gosciniak J and Tan D T 2013 Nanotechnology 24 185202
|
[26] |
Mohsin M, Neumaier D and Schall D 2015 Sci. Rep. 5 10967
|
[27] |
Rodriguez S B, Yan R and Kelly M 2012 Nat. Commun. 3 780
|
[28] |
Phare C T, Y H Daniel Lee and Cardenas J 2015 Nat. Photon. 9 511
|
[29] |
Fan M, Yang H and Zheng P 2017 Opt. Express 25 21619
|
[30] |
Zhang X, Zhang Y B and Xiong C 2016 J. Opt. 18 074016
|
[31] |
Feng J and Akimoto R 2014 IEEE Photon. Tech. Lett. 26 706
|
[32] |
Bauters J F, Heck M J R and John D D 2011 Opt. Express 19 24090
|
[33] |
Shiramin L A and Thourhout D V 2017 IEEE J. Sel. Top. Quantum Electron. 23 3600107
|
[34] |
Wang J, Cheng Z and Shu C 2015 IEEE Photon. Tech. Lett. 27 1765
|
[35] |
Sorianello V, Midrio M and Romagnoli M 2015 Opt. Express 23 6478
|
[36] |
Hu X, Zhang Y and Chen D 2019 J. Lightwave Technol. 37 2284
|
[37] |
Zhong H, Zhang Z and Chen B 2015 Nano Res. 8 1669
|
[38] |
Bao Q and Loh K P 2012 ACS Nano 6 3677
|
[39] |
Stauber T, Peres N M R and Geim A K 2008 Phys. Rev. B 78 085432
|
[40] |
Wülbern J H, Hampe J and Petrov A 2009 Appl. Phys. Lett. 94 241107
|
[41] |
Ji L, Gao Y and Xu Y 2018 IEEE J. Quantum Electron 54 5200107
|
[42] |
Yan J, Zhang Y and Kim P 2007 Phys. Rev. Lett. 98 166802
|
[43] |
Wang F, Zhang Y and Tian C 2008 Science 320 206
|
[44] |
Hwang C, Siegel D A and Mo S K 2012 Sci. Rep. 2 590
|
[45] |
Xu C, Jin Y and Yang L 2012 Opt. Express 20 22398
|
[46] |
Koester S J and Li M 2012 Appl. Phys. Lett. 100 171107
|
[47] |
Hu Y, Xiao X and Xu H 2012 Opt. Express 20 15079
|
[48] |
Cheng Z, Chen X and Wong C Y 2012 Opt. Lett. 37 1217
|
[49] |
Politi A, Cryan M J and Rarity J G 2008 Science 320 646
|
[50] |
Zhu X, Shi L and Schmidt M 2013 Nano Lett. 13 4690
|
[51] |
Zhu X, Yan W and Jepsen P U 2013 Appl. Phys. Lett. 102 131101
|
[52] |
Ding Y, Guan X and Zhu X 2017 Nanoscale 9 15576
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|