Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(8): 084206    DOI: 10.1088/1674-1056/ab9435
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Measurement and verification of concentration-dependent diffusion coefficient: Ray tracing imagery of diffusion process

Li Wei(魏利)1, Wei-Dong Meng(孟伟东)1,2, Li-Cun Sun(孙丽存)3, Xin-Fei Cao(曹新飞)1, Xiao-Yun Pu(普小云)1,2
1 Department of Physics, Yunnan University, Kunming 650091, China;
2 Key Laboratory of Quantum Information of Yunnan Province, Yunnan University, Kunming 650091, China;
3 Department of Physics, Yunnan Normal University, Kunming 650504, China
Abstract  Ray tracing method is used to study the propagation of collimated beams in a liquid-core cylindrical lens (LCL), which has dual functions of diffusion cell and image formation. The diffusion images on the focal plane of the used LCL are simulated by establishing and solving both linear and nonlinear ray equations, the calculated results indicate that the complex imaging results of LCL in inhomogeneous media can be treated by the law of ray propagation in homogeneous media under the condition of small refractive index gradient of diffusion solution. Guided by the calculation conditions, the diffusion process of triethylene glycol aqueous solution is experimentally studied at room temperature by using the LCL in this paper. The spatial and temporal concentration profile Ce(z, t) of diffusion solution is obtained by analyzing diffusion image appearing on the focal plane of the LCL; Then, the concentration-dependent diffusion coefficient is assumed to be a polynomial D(C)=D0×(1+α1C+α2C2+α3C3+…). The finite difference method is used to solve the Fick diffusion equation for calculating numerically the concentration profiles Cn(z, t). The D(C) of triethylene glycol aqueous solution is obtained by comparing the Cn(z,t) with Ce(z, t). Finally, the obtained polynomial D(C) is used to calculate the refractive index profiles nn(z, t)s of diffusion solution in the used LCL. Based on the ray propagation law in inhomogeneous media and the calculated n(z,t), the ray tracing method is used again to simulate the dynamic images of the whole experimental diffusion process to varify the correctness of the calculated D(C). The method presented in this work opens up a new way for both measuring and verifying the concentration-dependent liquid diffusion coefficients.
Keywords:  concentration-dependent liquid diffusion coefficients      liquid-core cylindrical lens      nonlinear ray equation      ray tracing method  
Received:  25 February 2020      Revised:  20 April 2020      Accepted manuscript online: 
PACS:  42.62.Eh (Metrological applications; optical frequency synthesizers for precision spectroscopy)  
  07.60.-j (Optical instruments and equipment)  
  42.25.Dd (Wave propagation in random media)  
  42.15.Dp (Wave fronts and ray tracing)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11804296), the Joint Key Project of Yunnan Province, China (Grant Nos. 2018FY001-020 and 2018ZI002), and the Fund from the Educational Department of Yunnan Province, China (Grant No. 2016CYH05).
Corresponding Authors:  Xiao-Yun Pu     E-mail:  xypu@163.com

Cite this article: 

Li Wei(魏利), Wei-Dong Meng(孟伟东), Li-Cun Sun(孙丽存), Xin-Fei Cao(曹新飞), Xiao-Yun Pu(普小云) Measurement and verification of concentration-dependent diffusion coefficient: Ray tracing imagery of diffusion process 2020 Chin. Phys. B 29 084206

[1] Meng W D, Xia Y, Song F X and Pu X Y 2017 Opt. Express 25 5626
[2] Sun L C, Du C, Li Q and Pu X Y 2016 Appl. Opt. 55 2011
[3] Kim B, Yang J, Lee D, Choi B, Hyeon T and Park J 2018 Adv. Mater. 30 1703316
[4] Cussler E L 2009 Diffusion:Mass Transfer in Fluid Systems, 3nd edn. (New York:Cambridge University Press) pp. 126-134
[5] Zhang J X 2018 Appl. Therm. Eng. 129 564
[6] Ali H, Zhang D, Wagner J and Park C 2018 Energies 11 899
[7] Ju Y Y, Zhang Q M, Gong Z Z and Ji G F 2013 Chin. Phys. B 22 083101
[8] Li Q and Pu X Y 2013 Acta Phys. Sin. 62 094206 (in Chinese)
[9] Wolff L, Zangi P, Brands T, Rausch M H, Koß H J, Fröoba A P and Bardow A 2018 Int. J. Thermophys. 39 133
[10] Siebel D, Scharfer P and Schabel W 2015 Macromolecules 48 8608
[11] Leonhardt U 2009 New. J. Phys. 11 093
[12] Moore D T 1980 Appl. Opt. 19 1035
[13] Crank J 1975 The Mathematics of Diffusion, 2nd edn. (London:Oxford University Press) pp. 104-137
[14] Zhong X H 2003 Modern fundamentals of optics (Beijing:Peking University Press) pp. 22-25
[15] Zhao J M, Tan J Y and Liu L H 2015 J. Quantum Spectrosc. Rad. 152 114
[16] Wu C Y and Hou M F 2012 Int. J. Heat. Mass. Transfer 55 6600
[17] Luneburg R K and Herzberger M 1964 Mathematical theory of optics (Berkeley:University of California Press) pp. 100-125
[18] Navarro R and Moreno-Barriuso E 1999 Opt. Lett. 24 951
[19] Schurig D, Pendry J B and Smith D R 2006 Opt. Express 14 9794
[20] Taflove A and Hagness S C 2005 Computational electrodynamics:the finite-difference time-domain method, 3nd edn. (Boston:Artech House) pp. 35-50
[21] Murio D A 2008 Comput. Math. Appl. 56 1138
[22] Fernández-Sempere J, Ruiz-Beviá F, Colom-Valiente J and Más-Pérez F 1996 J. Chem. Eng. Data 41 47
[23] Bogacheva I S, Zemdikhanov K B and Usmanov A G 1982 Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 25 182
[24] Sun L C, Meng W D and Pu X Y 2015 Opt. Express 23 23155
[25] Rashidnia N and Balasubramaniam R 2002 Appl. Opt. 41 1337
[1] Numerical study of converting beat-note signals of dual-frequency lasers to optical frequency combs by optical injection locking of semiconductor lasers
Chenhao Liu(刘晨浩), Haoshu Jin(靳昊澍), Hui Liu(刘辉), and Jintao Bai(白晋涛). Chin. Phys. B, 2022, 31(8): 084205.
[2] Interrogation of optical Ramsey spectrum and stability study of an 87Sr optical lattice clock
Jing-Jing Xia(夏京京), Xiao-Tong Lu(卢晓同), and Hong Chang(常宏). Chin. Phys. B, 2022, 31(3): 034209.
[3] Spectral filtering of dual lasers with a high-finesse length-tunable cavity for rubidium atom Rydberg excitation
Yang-Yang Liu(刘杨洋), Zhuo Fu(付卓), Peng Xu(许鹏), Xiao-Dong He(何晓东), Jin Wang(王谨), and Ming-Sheng Zhan(詹明生). Chin. Phys. B, 2021, 30(7): 074203.
[4] A fast and precise three-dimensional measurement system based on multiple parallel line lasers
Yao Wang(王尧) and Bin Lin(林斌). Chin. Phys. B, 2021, 30(2): 024201.
[5] A transportable optical lattice clock at the National Time Service Center
De-Huan Kong(孔德欢), Zhi-Hui Wang(王志辉), Feng Guo(郭峰), Qiang Zhang(张强), Xiao-Tong Lu(卢晓同), Ye-Bing Wang(王叶兵), Hong Chang(常宏). Chin. Phys. B, 2020, 29(7): 070602.
[6] Microwave frequency transfer over a 112-km urban fiber link based on electronic phase compensation
Wen-Xiang Xue(薛文祥), Wen-Yu Zhao(赵文宇), Hong-Lei Quan(全洪雷), Cui-Chen Zhao(赵粹臣), Yan Xing(邢燕), Hai-Feng Jiang(姜海峰), Shou-Gang Zhang(张首刚). Chin. Phys. B, 2020, 29(6): 064209.
[7] Multi-objective strategy to optimize dithering technique for high-quality three-dimensional shape measurement
Ning Cai(蔡宁), Zhe-Bo Chen(陈浙泊), Xiang-Qun Cao(曹向群), Bin Lin(林斌). Chin. Phys. B, 2019, 28(10): 104210.
[8] Optimized dithering technique in frequency domain for high-quality three-dimensional depth data acquisition
Ning Cai(蔡宁), Zhe-Bo Chen(陈浙泊), Xiang-Qun Cao(曹向群), Bin Lin(林斌). Chin. Phys. B, 2019, 28(8): 084202.
[9] Digitally calibrated broadband dual-comb gases absorption spectral measurements
Xinyi Chen(陈馨怡), Weipeng Zhang(张伟鹏), Haoyun Wei(尉昊赟), Yan Li(李岩). Chin. Phys. B, 2019, 28(6): 060703.
[10] Supercontinuum generation of highly nonlinear fibers pumped by 1.57-μm laser soliton
Song-Tao Fan(樊松涛), Yan-Yan Zhang(张颜艳), Lu-Lu Yan(闫露露), Wen-Ge Guo(郭文阁), Shou-Gang Zhang(张首刚), Hai-Feng Jiang(姜海峰). Chin. Phys. B, 2019, 28(6): 064204.
[11] Photonic generation of RF and microwave signal with relative frequency instability of 10-15
Lu-Lu Yan(闫露露), Wen-Yu Zhao(赵文宇), Yan-Yan Zhang(张颜艳), Zhao-Yang Tai(邰朝阳), Pan Zhang(张攀), Bing-Jie Rao(饶冰洁), Kai Ning(宁凯), Xiao-Fei Zhang(张晓斐), Wen-Ge Guo(郭文阁), Shou-Gang Zhang(张首刚), Hai-Feng Jiang(姜海峰). Chin. Phys. B, 2018, 27(3): 030601.
[12] Strontium optical lattice clock at the National Time Service Center
Ye-Bing Wang(王叶兵), Mo-Juan Yin(尹默娟), Jie Ren(任洁), Qin-Fang Xu(徐琴芳), Ben-Quan Lu(卢本全), Jian-Xin Han(韩建新), Yang Guo(郭阳), Hong Chang(常宏). Chin. Phys. B, 2018, 27(2): 023701.
[13] Microwave interrogation cavity for the rubidium space cold atom clock
Wei Ren(任伟), Yuan-Ci Gao(高源慈), Tang Li(李唐), De-Sheng Lü(吕德胜), Liang Liu(刘亮). Chin. Phys. B, 2016, 25(6): 060601.
[14] Monolithic CEO-stabilization scheme-based frequency comb from an octave-spanning laser
Zi-Jiao Yu(于子蛟), Hai-Nian Han(韩海年), Yang Xie(谢阳), Hao Teng(滕浩), Zhao-Hua Wang(王兆华), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2016, 25(4): 044205.
[15] Spectral distortion of dual-comb spectrometry due to repetition rate fluctuation
Hong-Lei Yang(杨宏雷), Hao-Yun Wei(尉昊赟), Yan Li(李岩). Chin. Phys. B, 2016, 25(4): 044207.
No Suggested Reading articles found!