Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(8): 084102    DOI: 10.1088/1674-1056/ab96a9
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Electromagnetic field of a relativistic electron vortex beam

Changyong Lei(雷长勇)1, Guangjiong Dong(董光炯)1,2
1 State Key Laboratory of Precision Spectroscopy, School of Physics and Electronics, East China Normal University, Shanghai 200241, China;
2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Abstract  Electron vortex beams (EVBs) have potential applications in nanoscale magnetic probes of condensed matter and nanoparticle manipulation as well as radiation physics. Recently, a relativistic electron vortex beam (REVB) has been proposed[Phys. Rev. Lett. 107 174802 (2011)]. Compared with EVBs, except for orbital angular momentum, an REVB has intrinsic relativistic effect, i.e., spin angular momentum and spin-orbit coupling. We study the electromagnetic field of an REVB analytically. We show that the electromagnetic field can be separated into two parts, one is only related to orbital quantum number, and the other is related to spin-orbit coupling effect. Exploiting this separation property, the difference between the electromagnetic fields of the REVB in spin-up and spin-down states can be used as a demonstration of the relativistic quantum effect. The linear momentum and angular momentum of the generated electromagnetic field have been further studied and it is shown that the linear momentum is weakly dependent on the spin state; while the angular momentum is evidently dependent on the spin state and linearly increases with the topological charge of electron vortex beam. The electromagnetic and mechanical properties of the REVB could be useful for studying the interaction between REVBs and materials.
Keywords:  relativistic electron vortex beam      electromagnetic vortex field      spin-orbit coupling      orbital angular momentum  
Received:  25 February 2020      Revised:  05 April 2020      Accepted manuscript online: 
PACS:  41.85.-p (Beam optics)  
  42.50.Tx (Optical angular momentum and its quantum aspects)  
  03.65.Pm (Relativistic wave equations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574085, 91536218, and 11834003), the 111 Project, China (Grant No. B12024), the National Key Research and Development Program of China (Grant No. 2017YFA0304201), and the Innovation Program of Shanghai Municipal Education Commission, China (Grant No. 2019-01-07-00-05-E00079).
Corresponding Authors:  Guangjiong Dong     E-mail:  gjdong@phy.ecnu.edu.cn

Cite this article: 

Changyong Lei(雷长勇), Guangjiong Dong(董光炯) Electromagnetic field of a relativistic electron vortex beam 2020 Chin. Phys. B 29 084102

[1] Bliokh K Y, Bliokh Y P, Savelev S and Nori F 2007 Phys. Rev. Lett. 99 190404
[2] Uchida M and Tonomura A 2010 Nature 464 737
[3] Verbeeck J, Tian H and Schattschneider P 2010 Nature 467 301
[4] McMorran B J, Agrawal A, Anderson I M, Herzing A A, Lezec H J, McClelland J J and Unguris J 2011 Science 331 192
[5] Grillo V, Gazzadi G C, Mafakheri E, Frabboni S, Karimi E and Boyd R W 2015 Phys. Rev. Lett. 114 034801
[6] Rusz J, Bhowmick S, Eriksson M and Karlsson N 2014 Phys. Rev. B 89 134428
[7] Rusz J, Idrobo J C and Bhowmick S 2014 Phys. Rev. Lett. 113 145501
[8] Schattschneider P, Löffler S, Stöger-Pollach M and Verbeeck J 2014 Ultramicroscopy 136 81
[9] Karimi E, Marrucci L, Grillo V and Santamato E 2012 Phys. Rev. Lett. 108 044801
[10] Lloyd S M, Babiker M and Yuan J 2013 Phys. Rev. A 88 031802(R)
[11] Gnanavel T, Yuan J and Babiker M 2012 Proc. 15th European Microscopy Congresss, September 16-21, 2012 Manchester, UK, p. PS2.9
[12] Verbeeck J, Tian H and Tendeloo G V 2013 Adv. Mater. 25 1114
[13] Lloyd S, Babiker M and Yuan J 2012 Phys. Rev. Lett. 108 074802
[14] Konkov A S, Potylitsyn A P and Polonskaya M S 2014 JETP Lett. 100 421
[15] Ivanov I P and Karlovers D V 2013 Phys. Rev. A 88 043840
[16] Ivanov I P and Karlovers D V 2013 Phys. Rev. Lett. 110 264801
[17] Ivanov I P, Serbo V G and Zaytsev V A 2016 Phys. Rev. A 93 053825
[18] Kaminer I, Mutzafi M, Levy A, Harari G, Sheinfux H H, Skirlo S, Nemirovsky J, Joannopoulos J D, Segev M and Soljačić M 2016 Phys. Rev. X 6 011006
[19] Larocque H, Bouchard F, Grillo V, Sit A, Frabboni S, Dunin-Borkowski R E, Padgett M J, Boyd R W and Karimi E 2016 Phys. Rev. Lett. 117 154801
[20] Galyamin S N and Tyukhtin A V 2017 Nucl. Ins. Met. Phy. Res. B 402 185
[21] Galyamin S N, Vorobev V V and Tyukhtin A V 2019 Phys. Rev. Accel. Beams. 22 083001
[22] Han Y J, Liao G Q, Chen L M, Li Y T, Wang W M and Zhang J 2015 Chin. Phys. B 24 065202
[23] Wu X F, Deng D M and Guo Q 2016 Chin. Phys. B 25 030701
[24] Cheng K, Liu P S and Lü B D 2008 Chin. Phys. B 17 1743
[25] Zhou Z H and Zhu L Q 2011 Chin. Phys. B 20 084201
[26] Katoh M, Fujimoto M, Kawaguchi H, Tsuchiya K, Ohmi K, Kaneyasu T, Taira Y, Hosaka M, Mochihashi A and Takashima Y 2017 Phys. Rev. Lett. 118 094801
[27] Katoh M, Fujimoto, Mirian N S, Konomi T, Taira Y, Kaneyasu T, Hosaka M, Yamamoto N, Mochihashi A, Takashima Y, Kuroda K, Miyamoto A, Miyamoto K and Sasaki S 2017 Sci. Rep. 7 6130
[28] Hébert C and Schattschneider P 2003 Ultramicroscopy 96 463
[29] Schattschneider P, Rubino S, Hébert C, Rusz J, Kuneš J, Novák P, Carlino E, Fabrizioli M, Panaccione G and Rossi G 2006 Nature 441 486
[30] Schattschneider P, Rubino S, Stöger-Pollach M, Hébert C, Rusz J, Calmels L and Snoeck E 2008 J. Appl. Phys. 103 07D931
[31] Rubino S, Schattschneider P, Stöger-Pollach M, Hébert C, Rusz J, Calmels L, Warot-Fonrose B, Houdellier F, Serin V and Novak P 2008 J. Mater. Res. 23 2582
[32] Schüler M and Berakdar J 2016 Phys. Rev. A 94 052710
[33] Weissbluth M 1978 Atoms and Molecules (New York:Academic Press) p. 313
[34] Bliokh K Y, Dennis M R and Nori F 2011 Phys. Rev. Lett. 107 174802
[35] Jentschura U D and Serbo V G 2011 Eur. Phys. J. C 71 1571
[36] For a nonrelativistic electron, spin-orbit coupling as a relativistic correction term is proportional to the orbital angular momentum quantum number l. However, for a relativistic electron, the spin-orbit coupling has a nonlinear realtion to the angular momentum number l.
[37] Jeffrey A and Dai H 2008 Handbook of Mathematical Formulas and Integrals 4th Edn. (Boston:Academic Press) p. 294
[38] Lloyd S M, Babiker M, Yuan J and Kerr-Edwards C 2012 Phys. Rev. Lett. 109 254801
[1] Diffraction deep neural network based orbital angular momentum mode recognition scheme in oceanic turbulence
Hai-Chao Zhan(詹海潮), Bing Chen(陈兵), Yi-Xiang Peng(彭怡翔), Le Wang(王乐), Wen-Nai Wang(王文鼐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(4): 044208.
[2] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[3] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[4] Asymmetrical spiral spectra and orbital angular momentum density of non-uniformly polarized vortex beams in uniaxial crystals
Ling-Yun Shu(舒凌云), Ke Cheng(程科), Sai Liao(廖赛), Meng-Ting Liang(梁梦婷), and Ceng-Hao Yang(杨嶒浩). Chin. Phys. B, 2023, 32(2): 024211.
[5] Majorana zero modes induced by skyrmion lattice
Dong-Yang Jing(靖东洋), Huan-Yu Wang(王寰宇), Wen-Xiang Guo(郭文祥), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2023, 32(1): 017401.
[6] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[7] Spin-orbit coupling adjusting topological superfluid of mass-imbalanced Fermi gas
Jian Feng(冯鉴), Wei-Wei Zhang(张伟伟), Liang-Wei Lin(林良伟), Qi-Peng Cai(蔡启鹏), Yi-Cai Zhang(张义财), Sheng-Can Ma(马胜灿), and Chao-Fei Liu(刘超飞). Chin. Phys. B, 2022, 31(9): 090305.
[8] Transmissive 2-bit anisotropic coding metasurface
Pengtao Lai(来鹏涛), Zenglin Li(李增霖), Wei Wang(王炜), Jia Qu(曲嘉), Liangwei Wu(吴良威),Tingting Lv(吕婷婷), Bo Lv(吕博), Zheng Zhu(朱正), Yuxiang Li(李玉祥),Chunying Guan(关春颖), Huifeng Ma(马慧锋), and Jinhui Shi(史金辉). Chin. Phys. B, 2022, 31(9): 098102.
[9] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[10] Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋). Chin. Phys. B, 2022, 31(7): 070306.
[11] Influence of Rashba spin-orbit coupling on Josephson effect in triplet superconductor/two-dimensional semiconductor/triplet superconductor junctions
Bin-Hao Du(杜彬豪), Man-Ni Chen(陈嫚妮), and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2022, 31(7): 077201.
[12] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[13] Gate tunable Rashba spin-orbit coupling at CaZrO3/SrTiO3 heterointerface
Wei-Min Jiang(姜伟民), Qiang Zhao(赵强), Jing-Zhuo Ling(凌靖卓), Ting-Na Shao(邵婷娜), Zi-Tao Zhang(张子涛), Ming-Rui Liu(刘明睿), Chun-Li Yao(姚春丽), Yu-Jie Qiao(乔宇杰), Mei-Hui Chen(陈美慧), Xing-Yu Chen(陈星宇), Rui-Fen Dou(窦瑞芬), Chang-Min Xiong(熊昌民), and Jia-Cai Nie(聂家财). Chin. Phys. B, 2022, 31(6): 066801.
[14] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[15] Asymmetric Fraunhofer pattern in Josephson junctions from heterodimensional superlattice V5S8
Juewen Fan(范珏雯), Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Ran Bi(毕然), Jiadong Zhou(周家东), Zheng Liu(刘政), Guang Yang(杨光), Jie Shen(沈洁), Fanming Qu(屈凡明), Li Lu(吕力), Ning Kang(康宁), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(5): 057402.
No Suggested Reading articles found!