ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Direct electron acceleration by chirped laser pulse in a cylindrical plasma channel |
Yong-Nan Hu(胡永南)1, Li-Hong Cheng(成丽红)2, Zheng-Wei Yao(姚征伟)1, Xiao-Bo Zhang(张小波)1, Ai-Xia Zhang(张爱霞)1, Ju-Kui Xue(薛具奎)1 |
1 College of Physics and Electronics Engineering, Northwest Normal University, Lanzhou 730070, China; 2 School of Science, Guizhou University of Engineering Science, Bijie 551700, China |
|
|
Abstract We study the dynamics of single electron in an inhomogeneous cylindrical plasma channel during the direct acceleration by linearly polarized chirped laser pulse. By adjusting the parameters of the chirped laser pulse and the plasma channel, we obtain the energy gain, trajectory, dephasing rate and unstable threshold of electron oscillation in the channel. The influences of the chirped factor and inhomogeneous plasma density distribution on the electron dynamics are discussed in depth. We find that the nonlinearly chirped laser pulse and the inhomogeneous plasma channel have strong coupled influence on the electron dynamics. The electron energy gain can be enhanced, the instability threshold of the electron oscillation can be lowered, and the acceleration length can be shortened by chirped laser, while the inhomogeneity of the plasma channel can reduce the amplitude of the chirped laser.
|
Received: 04 December 2019
Revised: 15 May 2020
Accepted manuscript online:
|
PACS:
|
41.75.Jv
|
(Laser-driven acceleration?)
|
|
52.38.Kd
|
(Laser-plasma acceleration of electrons and ions)
|
|
52.27.Ny
|
(Relativistic plasmas)
|
|
52.38.Hb
|
(Self-focussing, channeling, and filamentation in plasmas)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11865014, 11765017, 11764039, 11475027, 11274255, and 11305132), the Natural Science Foundation of Gansu Province of China (Grant No. 17JR5RA076), the Scientific Research Project of Gansu Higher Education of China (Grant No. 2016A-005), the Natural Science Foundation of Education Department of Guizhou Province of China (Grant No. Qianjiaohe-KY-[2017]301), and the Science and Technology Project of Guizhou Province of China (Grant No. Qiankehe-LH-[2017]7008). |
Corresponding Authors:
Ju-Kui Xue
E-mail: xuejk@nwnu.edu.cn
|
Cite this article:
Yong-Nan Hu(胡永南), Li-Hong Cheng(成丽红), Zheng-Wei Yao(姚征伟), Xiao-Bo Zhang(张小波), Ai-Xia Zhang(张爱霞), Ju-Kui Xue(薛具奎) Direct electron acceleration by chirped laser pulse in a cylindrical plasma channel 2020 Chin. Phys. B 29 084103
|
[1] |
Sprangle P, Esarey E and Ting A 1990 Phys. Rev. Lett. 64 2011
|
[2] |
Max C E, Arons J and Langdon A B 1974 Phys. Rev. Lett. 33 209
|
[3] |
Bobin J L, Decroisette M, Meyer B and Vitel Y 1973 Phys. Rev. Lett. 30 594
|
[4] |
Weng S M, Murakami M, Azechi H, Wang J W, Tasoko N, Chen M, Sheng Z M, Mulser P, Yu W and Shen B F 2014 Phys. Plasmas 21 012705
|
[5] |
Esarey E, Ting A and Sprangle P 1990 Phys. Rev. A 42 3526
|
[6] |
Faure J, Glinec Y, Santos J J, Ewald F, Rousseau J P, Kiselev S, Pukhov A, Hosokai T and Malka V 2005 Phys. Rev. Lett. 95 205003
|
[7] |
Esarey E, Schroeder C B and Leemans W P 2009 Rev. Mod. Phys. 81 1229
|
[8] |
Zhang Z, Chen Y, Cui S, He F, Chen M, Zhang Z, Yu J, Chen L, Sheng Z and Zhang J 2018 Nat. Photon. 12 554
|
[9] |
Clayton C E, Joshi C, Darrow C and Umstadter D 1985 Phys. Rev. Lett. 54 2343
|
[10] |
Zhao Q, Weng S M, Chen M, Zeng M, Hidding B, Jaroszynski D A, Assmann R and Sheng Z M 2019 Plasma Phys. Control. Fusion 61 085015
|
[11] |
Clayton C E, Marsh K A, Dyson A, Everett M, Lal A, Leemans W P, Williams R and Joshi C 1993 Phys. Rev. Lett. 70 37
|
[12] |
Krall J, Ting A, Esarey E and Sprangle P 1993 Phys. Rev. E 48 2157
|
[13] |
Modena A, Najmudin Z, Dangor A E, Clayton C E, Marsh K A, Joshi C, Malka V, Darrow C B, Danson C, Neely D and Walsh F N 1995 Nature 377 606
|
[14] |
Umstadter D, Dodd E and Kim J K 1996 Phys. Rev. Lett. 76 2073
|
[15] |
Esarey E, Hubbard R F, Leemans W P, Ting A and Sprangle P 1997 Phys. Rev. Lett. 79 2682
|
[16] |
Moore C I, Ting A, Mchaught S J, Qiu J, Burris H R and Sprangle P 1999 Phys. Rev. Lett. 82 1688
|
[17] |
Wang X, Donowan M, Dyer G, Wang X M, Zgadzaj R, Fazel N, Li Z Y, Yi S A, Zhang X, Henderson W, Chang Y Y, Korzekwa R, Tsai H E, Pai C H, Quevedo H, Dyer G, Gaul E, Martinez M, Bernstein A C, Borger T, Spinks M, Donovan M, Khudik V, Shvets G, Ditmire T and Downer M C 2013 Nat. Commun. 4 1988
|
[18] |
Leemans W P, Gonsalves A J, Mao H, Nakamura K, Benedetti C, Schroeder C B, Tóth C, Daniels J, Mittelberger D E and Bulanov S S 2014 Phys. Rev. Lett. 113 245002
|
[19] |
Rassou S, Bourdier A and Drouin M 2015 Phys. Plasmas 22 073104
|
[20] |
Pukhov A and Meyerter J 2002 Appl. Phys. B 74 355
|
[21] |
Pollock B B, Tsung F S, Albert F, Shaw J L, Clayton C E, Davidson A, Lemos N, Marsh K A, Pak A and Ralph J E 2015 Phys. Rev. Lett. 115 055004
|
[22] |
Lu W, Tzoufras M, Joshi C, Tsung F S, Mori W B, Vieira J, Fonseca R A and Silva L O 2007 Phys. Rev. ST Accel. Beams 10 061301
|
[23] |
Amiranoff F, Bernard D, Cros B, Jacquet F, Matthieussent G, Miné P, Mora P, Morillo J, Moulin F and Specka A E 1995 Phys. Rev. Lett. 74 5220
|
[24] |
Tajima T and Dawson J M 1979 Phys. Rev. Lett. 43 267
|
[25] |
Gahn C, Tsakiris G D, Pukhov A, Meyer-ter-Vehn J, Pretzler G, Thirolf P, Habs D and Witte K J 1999 Phys. Rev. Lett. 83 4772
|
[26] |
Dyakonov M I and Varshalovich D A 1971 Phys. Lett. 35 277
|
[27] |
Edighoffer J A, Kimura W D, Pantell R H, Piestrup M A and Wang D Y 1981 Phys. Rev. A 23 1848
|
[28] |
Koyama K, Hazama H, Saito N and Tanimoto M 2002 Int. J. Appl. Electromagn. Mech. 14 263
|
[29] |
Seres J, Seres E, Verhoef A J, Tempea G, Streli C, Wobrauschek P, Yakovlev V, Scrinzi A, Spielmann C and Krausz F 2005 Nature 433 596
|
[30] |
Tatarakis M, Watts I, Beg F N, Clark E L, Dangor A E, Gopal A, Haines M G, Norreys P A, Wagner U and Wei M 2002 Nature 415 280
|
[31] |
Weng S, Zhao Q, Sheng Z, Yu W, Luan S, Chen M, Yu L, Murakami M, Mori W B and Zhang J 2017 Optica 4 1086
|
[32] |
Zheng X, Weng S, Zhang Z, Ma H, Chen M, McKenna P and Sheng Z 2019 Opt. Express 27 19319
|
[33] |
Liu M, Weng S M, Wang H C, Chen M, Zhao Q, Sheng Z M, He M Q, Li Y T and Zhang J 2018 Phys. Plasmas 25 063103
|
[34] |
Malka G, Lefebvre E and Miquel J L 1997 Phys. Rev. Lett. 78 3314
|
[35] |
Wu X Y, Wang P X and Kawata S 2012 Appl. Phys. Lett 100 221109
|
[36] |
Gupta D N, Jang H J and Suk H 2009 J. Appl. Phys. 105 106110
|
[37] |
Hooker S M 2013 Nature Photon. 7 775
|
[38] |
Sohbatzadeh F, Mirzanejhad S and Ghasemi M 2006 Phys. Plasmas 13 123108
|
[39] |
Gupta D N and Suk H 2006 Phys. Plasmas 13 013105
|
[40] |
Arefiev A V, Khudik V N, Robinson A P L, Shvets G, Willingale L and Schollmeier M 2016 Phys. Plasmas 23 056704
|
[41] |
Arefiev A V, Breizman B N, Schollmeier M and Khudik V N 2012 Phys. Rev. Lett. 108 145004
|
[42] |
Arefiev A V, Khudik V N and Schollmeier M 2014 Phys. Plasmas 21 033104
|
[43] |
Raoa B S, Chakera J A, Naik P A, Kumar M and Gupta P D 2011 Phys. Plasmas 18 093104
|
[44] |
Zhang P, Hu Y, Li T, Cannan D, Yin X, Morandotti R, Chen Z G and Zhang X 2012 Phys. Rev. Lett. 109 193901
|
[45] |
Chelkowski S, Bandrauk A D, Corkum P B 1990 Phys. Rev. Lett. 65 2355
|
[46] |
Khachatryan A G, Van Goor F A and Boller K J 2004 Phys. Rev. E 70 067601
|
[47] |
Khachatryan A G, Van Goor F A, Verschuur J W and Boller K 2005 Phys. Plasmas 12 062116
|
[48] |
Pukhov A, Sheng Z M and Meyer-ter-Vehn J 1999 Phys. Plasmas 6 2847
|
[49] |
Sheng Z, Wu H, Li K and Zhang J 2004 Phys. Rev. E 69 025401
|
[50] |
Sheng Z, Mima K, Zhang J and Sanuki H 2005 Phys. Rev. Lett. 94 095003
|
[51] |
Layer B D, York A, Antonsen T M, Varma S, Chen Y, Leng Y and Milchberg H M 2007 Phys. Rev. Lett. 99 035001
|
[52] |
Robinson A P L, Arefiev A V and Khudik V N 2015 Plasma Phys. 22 083114
|
[53] |
Arefiev A V, Khudik V N, Robinson A P L, Shvets G and Willingale L 2016 Phys. Plasmas 23 023111
|
[54] |
Treacy E B 1968 Phys. Lett. A 28 34
|
[55] |
Dias J M, Stenz C, Lopes N, Badiche X, Blasco F, Dos Santos A, E Silva L O, Mysyrowicz A, Antonetti A and Mendon?a J T 1997 Phys. Rev. Lett. 78 4773
|
[56] |
Pathak N, Zhidkov A, Hosokai T and Kodama R 2018 Phys. Plasmas 25 013119
|
[57] |
Zeitouny A, Stepanov S, Levinson O and Horowitz M 2005 IEEE Photon. Technol. Lett. 17 660
|
[58] |
Rao B S, Moorti A, Naik P A and Gupta P D 2013 Phys. Rev. ST Accel. Beams 16 091301
|
[59] |
Ojarand J and Annus P 2010 Elektronika ir Elektrotechnika 4 73
|
[60] |
Nikodem M, Weidmann D and Wysocki G 2012 Appl. Phys. B 109 477
|
[61] |
Faure J, Marqués J R, Malka V, Amiranoff F, Najmudin Z, Walton B, Rousseau J P, Ranc S, Solodov A and Mora P 2001 Phys. Rev. E 63 065401
|
[62] |
Brabec T and Krausz F 2000 Rev. Mod. Phys. 72 545
|
[63] |
Gordon D F, Hafizi B, Hubbard R F, Pen?ano J R, Sprangle P and Ting A 2003 Phys. Rev. Lett. 90 215001
|
[64] |
Hajima R and Nagai R 2003 Phys. Rev. Lett. 91 024801
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|