|
|
High-resolution angle-resolved photoemission study of oxygen adsorbed Fe/MgO(001) |
Mingtian Zheng1, Eike F. Schwier2, Hideaki Iwasawa1, Kenya Shimada2 |
1 Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima 739-8526, Japan; 2 Hiroshima Synchrotron Radiation Center, Hiroshima University, Kagamiyama 2-313, Higashi-Hiroshima 739-0046, Japan |
|
|
Abstract We have investigated the electronic states of clean Fe(001) and oxygen adsorbed Fe(001)-p(1×1)-O films epitaxially grown on MgO(001) substrates by means of polarization-dependent angle-resolved photoemission spectroscopy (ARPES) and extensive density-functional theory (DFT) calculations. The observed Fermi surfaces and band dispersions of pure Fe near the Fermi level were modified upon oxygen adsorption. By the detailed comparison of ARPES and DFT results of the oxygen adsorbed Fe surface, we have clarified the orbital-dependent p-d hybridization in the topmost and second Fe layers. Furthermore, the observed energy levels and Fermi wave numbers for the oxygen adsorbed Fe surface were deviated from the DFT calculations depending on the orbital characters and momentum directions, indicating an anisotropic interplay of the electron correlation and p-d hybridization effects in the surface region.
|
Received: 29 April 2020
Revised: 09 May 2020
Accepted manuscript online:
|
PACS:
|
79.60.-i
|
(Photoemission and photoelectron spectra)
|
|
68.47.Gh
|
(Oxide surfaces)
|
|
75.70.-i
|
(Magnetic properties of thin films, surfaces, and interfaces)
|
|
Corresponding Authors:
Mingtian Zheng, Kenya Shimada
E-mail: zhengmingtian@hiroshima-u.ac.jp;kshimada@hiroshima-u.ac.jp
|
Cite this article:
Mingtian Zheng, Eike F. Schwier, Hideaki Iwasawa, Kenya Shimada High-resolution angle-resolved photoemission study of oxygen adsorbed Fe/MgO(001) 2020 Chin. Phys. B 29 067901
|
[1] |
Henrich V E and Cox P A 1994 The surface science of metal oxides (Cambridge: Cambridge University Press)
|
[2] |
Parkinson G S 2016 Surf. Sci. Rep. 71 272
|
[3] |
Uebing C 1998 Prog. Solid. State Ch. 26 155
|
[4] |
Picone A, Riva M, Brambilla A, Calloni A, Bussetti G, Finazzi M, Ciccacci F and Duó L 2016 Surf. Sci. Rep. 71 32
|
[5] |
Yuasa S, Nagahama T, Fukushima A, Suzuki Y and Ando K 2004 Nature Mater. 3 868
|
[6] |
Fu Q, Li W X, Yao Y, Liu H, Su H Y, Ma D, Gu X K, Chen L, Wang Z, Zhang H, Wang B and Bao X 2010 Science 328 1141
|
[7] |
Legg K O, Jona F, Jepsen D W and Marcus P M 1977 Phys. Rev. B 16 5271
|
[8] |
Jona F and Marcus P M 1987 Solid State Commun. 64 667
|
[9] |
Headrick R L, Konarski P, Ylisove S M and Graham W R 1989 Phys. Rev. B 39 5713
|
[10] |
Parihar S S, Meyerheim H L, Mohseni K, Ostanin S, Ernst A, Jedrecy N, Felici R and Kirschner J 2010 Phys. Rev. B 81 075428
|
[11] |
Huang H and Hermanson J 1985 Phys. Rev. B 32 6312
|
[12] |
Chubb S R and Pickett W E 1987 Phys. Rev. Lett. 58 1248
|
[13] |
Błoński P, Kiejna A and Hafner J 2005 Surf. Sci. 590 88
|
[14] |
Błoński P, Kiejna A and Hafner J 2007 J. Phys.: Condens. Matter 19 096011
|
[15] |
Hugosson H W, Cao W M, Seetharaman S and Delin A 2013 J. Phys. Chem. C 117 6161
|
[16] |
Panzner G, Mueller D R and Rhodin T N 1985 Phys. Rev. B 32 3472
|
[17] |
Johnson P D, Clarke A, Brookes N B, Hulbert S L, Sinkovic B and Smith N V 1988 Phys. Rev. Lett. 61 2257
|
[18] |
Clarke A, Brookes N B, Johnson P D, Weinert M, Sinkovic B and Smith N V 1990 Phys. Rev. B 41 9659
|
[19] |
Fink R L, Mulhollan G A, Andrews A B, Erskine J L and Walters G K 1992 Phys. Rev. B 45 9824
|
[20] |
Eibl C, Schmidt A B and Donath M 2012 Phys. Rev. B 86 161414
|
[21] |
Donati F, Sessi P, Achilli S, Li Bassi A, Passoni M, Casari C S, Bottani C E, Brambilla A, Picone A, Finazzi M, Duó L, Trioni M I and Ciccacci F 2009 Phys. Rev. B 79 195430
|
[22] |
Picone A, Fratesi G, Brambilla A, Sessi P, Donati F, Achilli S, Maini L, Trioni M I, Casari C S, Passoni M, Li Bassi A, Finazzi M, Duó L and Ciccacci F 2010 Phys. Rev. B 81 115450
|
[23] |
Picone A, Brambilla A, Calloni A, Duó L, Finazzi M and Ciccacci F 2011 Phys. Rev. B 83 235402
|
[24] |
Tange A, Gao C L, Yavorsky B Y, Maznichenko I V, Etz C, Ernst A, Hergert W, Mertig I, Wulfhekel W and Kirschner J 2010 Phys. Rev. B 81 195410
|
[25] |
Bertacco R and Ciccacci F 1999 Phys. Rev. B 59 4207
|
[26] |
Bertacco R, Merano M and Ciccacci F 1998 Appl. Phys. Lett. 72 2050
|
[27] |
Bertacco R, Onofrio D and Ciccacci F 1999 Rev. Sci. Instrum. 70 3572
|
[28] |
Okuda T, Takeichi Y, Maeda Y, Harasawa A, Matsuda I, Kinoshita T and Kakizaki A 2008 Rev. Sci. Instrum. 79 123117
|
[29] |
Schäfer J, Hoinkis M, Rotenberg E, Blaha P and Claessen R 2005 Phys. Rev. B 72 155115
|
[30] |
Cui X Y, Shimada K, Sakisaka Y, Kato H, Hoesch M, Oguchi T, Aiura Y, Namatame H and Taniguchi M 2010 Phys. Rev. B 82 195132
|
[31] |
http://www.openmx-square.org
|
[32] |
Ceperley D M and Alder B J 1980 Phys. Rev. Lett. 45 566
|
[33] |
http://www.openmx-square.org/openmx_man3.8/node153.html
|
[34] |
Popescu V and Zunger A 2012 Phys. Rev. B 85 085201
|
[35] |
Mulliken R S 1955 J. Chem. Phys. 23 1833
|
[36] |
Shimada K, Arita M, Matsui T, Goto K, Qiao S, Yoshida K, Taniguchi M, Namatame H, Sekitani T, Tanaka K, Yoshida H, Shirasawa K, Smolyakov N and Hiraya A 2001 Nucl. Instrum. Methods Phys. Res. A 467-468 504
|
[37] |
Iwasawa H, Shimada K, Schwier E F, Zheng M, Kojima Y, Hayashi H, Jiang J, Higashiguchi M, Aiura Y, Namatame H and Taniguchi M 2017 J. Synchrotron Rad. 24 836
|
[38] |
Taking into account the ARPES results on pure Fe(001) given by Plucinski et al. 2009 Phys. Rev. B 80 184430, the inner potential V0 is estimated to be |V0|~6-7 eV. In this case, the kz value for the ARPES result taken at hν=55 eV is away from the Γ point about ~25% of the distance between Γ and H points of the bulk Brillouin zone. Hence it is closer to the Γ point.
|
[39] |
Kittel C 1987 Quantum theory of solids, 2nd Edn. (New York: John Wiley & Sons)
|
[40] |
Callaway J and Wang C S 1977 Phys. Rev. B 16 2095
|
[41] |
Liebsch A and Lichtenstein A 2000 Phys. Rev. Lett. 84 1591
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|