Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(5): 057306    DOI: 10.1088/1674-1056/ab81fc
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Improvements in reverse breakdown characteristics of THz GaAs Schottky barrier varactor based on metal-brim structure

Lu-Wei Qi(祁路伟)1,2,3, Xiao-Yu Liu(刘晓宇)2, Jin Meng(孟进)1, De-Hai Zhang(张德海)1, Jing-Tao Zhou(周静涛)2
1 Key Laboratory of Microwave Remote Sensing, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China;
2 Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  The excellent reverse breakdown characteristics of Schottky barrier varactor (SBV) are crucially required for the application of high power and high efficiency multipliers. The SBV with a novel Schottky structure named metal-brim is fabricated and systemically evaluated. Compared with normal structure, the reverse breakdown voltage of the new type SBV improves from -7.31 V to -8.75 V. The simulation of the Schottky metal-brim SBV is also proposed. Three factors, namely distribution of leakage current, the electric field, and the area of space charge region are mostly concerned to explain the physical mechanism. Schottky metal-brim structure is a promising approach to improve the reverse breakdown voltage and reduce leakage current by eliminating the accumulation of charge at Schottky electrode edge.
Keywords:  breakdown characteristics      Schottky metal-brim      Schottky barrier varactor      GaAs  
Received:  20 December 2019      Revised:  10 March 2020      Accepted manuscript online: 
PACS:  73.40.Mr (Semiconductor-electrolyte contacts)  
  73.61.Ey (III-V semiconductors)  
  85.30.Kk (Junction diodes)  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
Corresponding Authors:  Jing-Tao Zhou     E-mail:  zhoujingtao@ime.ac.cn

Cite this article: 

Lu-Wei Qi(祁路伟), Xiao-Yu Liu(刘晓宇), Jin Meng(孟进), De-Hai Zhang(张德海), Jing-Tao Zhou(周静涛) Improvements in reverse breakdown characteristics of THz GaAs Schottky barrier varactor based on metal-brim structure 2020 Chin. Phys. B 29 057306

[1] Chattopadhyay G 2011 IEEE Trans. Terahertz Sci. Technol. 1 33
[2] Marso M 2010 The Eighth International Conference on Advanced Semiconductor Devices and Microsystems p. 147
[3] Dhillon S S, Vitiello M S, Linfield E H, Davies A G, Hoffmann M C and Booske J 2017 J. Phys. D: Appl. Phys. 50 043001
[4] Mittleman D M 2018 Opt. Express 26 9417
[5] Hou D, Chen J and Yan P 2018 IEEE Trans. Terahertz Sci. Technol. 1
[6] Martin S, Nakamura B, Fung A, Smith P, Bruston J and Maestrini A 2001 IEEE MTT-S International Microwave Sympsoium Digest p. 1641
[7] Lewis J A and Wasserstrom E 1970 Bell Syst. Tech. J. 49 1183
[8] Huang Y, Jayaprakash K V A and Cheung C 2014 IEEE Applied Power Electronics Conference and Exposition-APEC p. 2902
[9] Liang S, Song X, Zhang L, Lv Y, Wang Y, Wei B and Feng Z 2020 IEEE Electron Dev. Lett. 1
[10] Liu X Y, Zhang Y, Xia D J, Ren T H, Zhou J T, Guo D and Jin Z 2017 Chin. Phys. Lett. 34 070701
[11] Schwarz M and Kloes A 2016 IEEE Trans. Electron Devices 63 2757
[12] Nawawi A, Tseng K J, Amaratunga G A J, Umezawa H and SHikata S 2013 Diamond Relat. Mater. 35 1
[13] Goossens R J G, Beebe S, Yu Z and Dutton R W 1994 IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems p. 310
[14] Trojnar A H, Valdivia C E and LaPierre R R 2016 IEEE Journal of Photovoltaics 6 1494
[15] Neamen and Donald A 2003 Semiconductor physics and devices: basic principles (NY: McGraw-Hill) p. 212
[16] Taking S 2012 AlN/GaN MOS-HEMTs technology Doctoral dissertation (Glasgow: University of Glasgow)
[17] Ren T, Zhang Y, Liu S, Guo F, Jin Z, Zhou J and Yang C 2017 J. Infrared, Millimeter, Terahertz Waves 38 143
[18] Tang A Y, Drakinskiy V, Sobis P, Vukusic J and Stake J 2009 34th International Conference on Infrared, Millimeter, and Terahertz Waves p. 1
[19] Ellis J A and Barnes P A 2000 Appl. Phys. Lett. 76 124
[20] McLean A B, Dharmadasa I M and Williams R H 1986 Semicond. Sci. Technol. 1 137
[21] Maeda K, Ikoma H, Sato K and Ishida T 1993 Appl. Phys. Lett. 62 2560
[22] Kiuru T, Mallat J, Raisanen A V and Narhi T 2011 IEEE Trans. Microwave Theor. Techniq. 59 8
[23] Saini K S 2003 Development of frequency multiplier technology for ALMA
[24] Narita T, Kikuta D, Takahashi N, Kataoka K, Kimoto Y, Uesugi T and Sugimoto M 2011 Phys. Status Solidi A 208 1541
[1] Atomic-scale insights of indium segregation and its suppression by GaAs insertion layer in InGaAs/AlGaAs multiple quantum wells
Shu-Fang Ma(马淑芳), Lei Li(李磊), Qing-Bo Kong(孔庆波), Yang Xu(徐阳), Qing-Ming Liu(刘青明), Shuai Zhang(张帅), Xi-Shu Zhang(张西数), Bin Han(韩斌), Bo-Cang Qiu(仇伯仓), Bing-She Xu(许并社), and Xiao-Dong Hao(郝晓东). Chin. Phys. B, 2023, 32(3): 037801.
[2] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[3] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[4] Temporal response of laminated graded-bandgap GaAs-based photocathode with distributed Bragg reflection structure: Model and simulation
Zi-Heng Wang(王自衡), Yi-Jun Zhang(张益军), Shi-Man Li(李诗曼), Shan Li(李姗), Jing-Jing Zhan(詹晶晶), Yun-Sheng Qian(钱芸生), Feng Shi(石峰), Hong-Chang Cheng(程宏昌), Gang-Cheng Jiao(焦岗成), and Yu-Gang Zeng(曾玉刚). Chin. Phys. B, 2022, 31(9): 098505.
[5] Polarization-dependent ultrafast carrier dynamics in GaAs with anisotropic response
Ya-Chao Li(李亚超), Chao Ge(葛超), Peng Wang(汪鹏), Shuang Liu(刘爽), Xiao-Ran Ma(麻晓冉), Bing Wang(王冰), Hai-Ying Song(宋海英), and Shi-Bing Liu(刘世炳). Chin. Phys. B, 2022, 31(6): 067102.
[6] Impact of gate offset in gate recess on DC and RF performance of InAlAs/InGaAs InP-based HEMTs
Shurui Cao(曹书睿), Ruize Feng(封瑞泽), Bo Wang(王博), Tong Liu(刘桐), Peng Ding(丁芃), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(5): 058502.
[7] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[8] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[9] Improved thermal property of strained InGaAlAs/AlGaAs quantum wells for 808-nm vertical cavity surface emitting lasers
Zhuang-Zhuang Zhao(赵壮壮), Meng Xun(荀孟), Guan-Zhong Pan(潘冠中), Yun Sun(孙昀), Jing-Tao Zhou(周静涛), and De-Xin Wu(吴德馨). Chin. Phys. B, 2022, 31(3): 034208.
[10] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[11] Terahertz generation and detection of LT-GaAs thin film photoconductive antennas excited by lasers of different wavelengths
Xin Liu(刘欣), Qing-Hao Meng(孟庆昊), Jing Ding(丁晶), Zhi-Chen Bai(白志晨), Jia-Hui Wang(王佳慧), Cong Zhang(张聪), Bo Su(苏波), and Cun-Lin Zhang(张存林). Chin. Phys. B, 2022, 31(2): 028701.
[12] Impact of symmetric gate-recess length on the DC and RF characteristics of InP HEMTs
Ruize Feng(封瑞泽), Bo Wang(王博), Shurui Cao(曹书睿), Tong Liu(刘桐), Yongbo Su(苏永波), Wuchang Ding(丁武昌), Peng Ding(丁芃), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(1): 018505.
[13] Growth of high-crystallinity uniform GaAs nanowire arrays by molecular beam epitaxy
Yu-Bin Kang(亢玉彬), Feng-Yuan Lin(林逢源), Ke-Xue Li(李科学), Ji-Long Tang(唐吉龙), Xiao-Bing Hou(侯效兵), Deng-Kui Wang(王登魁), Xuan Fang(方铉), Dan Fang(房丹), Xin-Wei Wang(王新伟), and Zhi-Peng Wei(魏志鹏). Chin. Phys. B, 2021, 30(7): 078102.
[14] Characterization of low-resistance ohmic contacts to heavily carbon-doped n-type InGaAsBi films treated by rapid thermal annealing
Shu-Xing Zhou(周书星), Li-Kun Ai(艾立鹍), Ming Qi(齐鸣), An-Huai Xu(徐安怀), Jia-Sheng Yan(颜家圣), Shu-Sen Li(李树森), and Zhi Jin(金智). Chin. Phys. B, 2021, 30(2): 027304.
[15] Numerical investigation on threading dislocation bending with InAs/GaAs quantum dots
Guo-Feng Wu(武国峰), Jun Wang(王俊), Wei-Rong Chen(陈维荣), Li-Na Zhu(祝丽娜), Yuan-Qing Yang(杨苑青), Jia-Chen Li(李家琛), Chun-Yang Xiao(肖春阳), Yong-Qing Huang(黄永清), Xiao-Min Ren(任晓敏), Hai-Ming Ji(季海铭), and Shuai Luo(罗帅). Chin. Phys. B, 2021, 30(11): 110201.
No Suggested Reading articles found!