Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(5): 057307    DOI: 10.1088/1674-1056/ab821e
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

High performance InAlN/GaN high electron mobility transistors for low voltage applications

Minhan Mi(宓珉瀚)1, Meng Zhang(张濛)1, Sheng Wu(武盛)1, Ling Yang(杨凌)2, Bin Hou(侯斌)1, Yuwei Zhou(周雨威)2, Lixin Guo(郭立新)3, Xiaohua Ma(马晓华)1, Yue Hao(郝跃)1
1 Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China;
2 School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710071, China;
3 School of Physics and Optoelectronic Engineering, Xidian University, Xi'an 710071, China
Abstract  A high performance InAlN/GaN high electron mobility transistor (HEMT) at low voltage operation (6-10 V drain voltage) has been fabricated. An 8 nm InAlN barrier layer is adopted to generate large 2DEG density thus to reduce sheet resistance. Highly scaled lateral dimension (1.2 μm source-drain spacing) is to reduce access resistance. Both low sheet resistance of the InAlN/GaN structure and scaled lateral dimension contribute to an high extrinsic transconductance of 550 mS/mm and a large drain current of 2.3 A/mm with low on-resistance (Ron) of 0.9 Ω·mm. Small signal measurement shows an fT/fmax of 131 GHz/196 GHz. Large signal measurement shows that the InAlN/GaN HEMT can yield 64.7%-52.7% (Vds=6-10 V) power added efficiency (PAE) associated with 1.6-2.4 W/mm output power density at 8 GHz. These results demonstrate that GaN-based HEMTs not only have advantages in the existing high voltage power and high frequency rf field, but also are attractive for low voltage mobile compatible rf applications.
Keywords:  InAlN/GaN      high electron mobility transistor (HEMT)      low voltage  
Received:  25 February 2020      Revised:  16 March 2020      Accepted manuscript online: 
PACS:  73.50.-h (Electronic transport phenomena in thin films)  
  73.61.-r (Electrical properties of specific thin films)  
  85.90.+h (Other topics in electronic and magnetic devices and microelectronics)  
Fund: Project supported by the China Postdoctoral Science Foundation (Grant No. 2018M640957), the Fundamental Research Funds for the Central Universities, China (Grant No. 20101196761), the National Natural Science Foundation of China (Grant No. 61904135), the National Defense Pre-Research Foundation of China (Grant No. 31513020307), and the Natural Science Foundation of Shaanxi Province of China (Grant No. 2020JQ-316).
Corresponding Authors:  Minhan Mi, Meng Zhang     E-mail:  miminhan@qq.com;498078211@qq.com

Cite this article: 

Minhan Mi(宓珉瀚), Meng Zhang(张濛), Sheng Wu(武盛), Ling Yang(杨凌), Bin Hou(侯斌), Yuwei Zhou(周雨威), Lixin Guo(郭立新), Xiaohua Ma(马晓华), Yue Hao(郝跃) High performance InAlN/GaN high electron mobility transistors for low voltage applications 2020 Chin. Phys. B 29 057307

[1] Wu S B, Gao J F, Wang W B and Zhang J Y 2016 IEEE Trans. Electron. Devices 63 3882
[2] Hao Y, Yang L, Ma X H, Ma J G, Cao M Y, Pan C Y, Wang C and Zhang J C 2011 IEEE Electron Device Lett. 32 626
[3] Yang L, Zhou X W, Ma X H, Lv L, Cao Y R, Zhang J C and Hao Y 2017 Chin. Phys. B 26 017304
[4] Mi M H, Ma X H, Yang L, Lu Yang, Hou B, Zhu J J, Zhang M, Zhang H S, Zhu Q, Yang L A and Hao Y 2017 IEEE Trans. Electron. Devices 64 4875
[5] Palacios T, Chakraborty A, Rajan S, Poblenz C, Keller S, DenBaars S P, Speck J S and Mishra U K 2005 IEEE Electron Device Lett. 26 781
[6] Chu R M, Shen L, Fichtenbaum N, Brown D, Chen Z, Keller S, DenBaars S P and Mishra U K 2008 IEEE Electron Device Lett. 29 974
[7] Yue Y Z, Hu Z Y, Guo J, Sensale-Rodriguez B, Li G W, Wang R H, Faria F, Fang T, Song B, Gao X, Guo S P, Kosel T, Snider G, Fay P, Jena D and Xing H L 2012 IEEE Electron Device Lett. 33 988
[8] Shinohara K, Regan D C, Tang Y, Corrion A L, Brown D F, Wong J C, Robinson J F, Fung H H, Schmitz A, Oh T C, Kim S J, Chen P S, Nagele R G, Margomenos A D and Micovic M 2013 IEEE Trans. Electron. Devices 60 2982
[9] Mi M H, Ma X H, Yang L, Lu Y, Hou B, Zhang M, Zhang H S, Wu S and Hao Y 2019 AIP Adv. 9 045212
[10] Then H W, Chow L A, Dasgupta S, Gardner S, Radosavljevic M, Rao V R, Sung S H, Yang G and Chau R S 2015 Proceedings of Symposium on VLSI Technology, June 16-18, 2015, Kyoto, Japan, p. 202
[11] Mao W, Fan J S, Du M, Zhang J F, Zheng X F, Wang C, Ma X H, Zhang J C and Hao Y 2016 Chin. Phys. B 25 127305
[12] Ando Y, Okamoto Y, Miyamoto H, Nakayama T, Inoue T and Kuzuhara M 2003 IEEE Electron Device Lett. 24 289
[13] Wu Y F, Saxler A, Moore M, Smith R P, Sheppard S, Chavarkar P M, Wisleder T, Mishra U K and Parikh 2004 IEEE Electron Device Lett. 25 117
[14] Liu J, Zhou Y, Zhu J, Cai Y, Lau K M and Chen K J 2007 IEEE Trans. Electron. Devices 54 2
[15] Tsou C W, Kang H C, Lian Y W and Hsu S 2016 IEEE Trans. Electron. Devices 63 4218
[16] Medjdoub F, Alomari M, Carlin J F, Gonschorek M, Feltin E, Py M A, Grandjean N and Kohn E 2008 IEEE Electron Device Lett. 29 422
[17] Crespo A, Bellot M M, Chabak K D, Gillespie J K, Jessen G H, Miller V, Trejo M, Via G D, Walker D E, Jr, Winningham B W, Smith H E, Cooper T A, Gao X and Guo S 2010 IEEE Electron Device Lett. 31 2
[18] Chung J W, Saadat O I, Tirado J M, Gao X, Guo S P and Palacios T 2009 IEEE Electron Device Lett. 30 904
[19] Lu Y, Ma X H, Yang L, Hou B, Mi M H, Zhang M, Zheng J X, Zhang H S and Hao Y 2018 IEEE Electron Device Lett. 39 811
[20] Saunier P, Schuette M L, Chou T M, Tserng H Q, Ketterson A, Beam E, Pilla M and Gao X 2013 IEEE Trans. Electron. Devices 60 3099
[21] Vetury R, Zhang N Q, Keller S and Mishra U K 2001 IEEE Trans. Electron. Devices 48 560
[1] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[2] Current oscillation in GaN-HEMTs with p-GaN islands buried layer for terahertz applications
Wen-Lu Yang(杨文璐), Lin-An Yang(杨林安), Fei-Xiang Shen(申飞翔), Hao Zou(邹浩), Yang Li(李杨), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 058505.
[3] Characteristics of AlGaN/GaN high electron mobility transistors on metallic substrate
Minglong Zhao(赵明龙), Xiansheng Tang(唐先胜), Wenxue Huo(霍雯雪), Lili Han(韩丽丽), Zhen Deng(邓震), Yang Jiang(江洋), Wenxin Wang(王文新), Hong Chen(陈弘), Chunhua Du(杜春花), Haiqiang Jia(贾海强). Chin. Phys. B, 2020, 29(4): 048104.
[4] Simulation study of InAlN/GaN high-electron mobility transistor with AlInN back barrier
Tie-Cheng Han(韩铁成), Hong-Dong Zhao(赵红东), Lei Yang(杨磊), Yang Wang(王杨). Chin. Phys. B, 2017, 26(10): 107301.
[5] Degraded model of radiation-induced acceptor defects for GaN-based high electron mobility transistors (HEMTs)
Fan Long(范隆), Hao Yue(郝跃), Zhao Yuan-Fu(赵元富), Zhang Jin-Cheng(张进城), Gao Zhi-Yuan(高志远), and Li Pei-Xian(李培咸). Chin. Phys. B, 2009, 18(7): 2912-2919.
[6] A bistable, self-latching inverter by the monolithic integration of resonant tunnelling diode and high electron mobility transistor
Ma Long(马龙), Huang Ying-Long(黄应龙), Zhang Yang(张杨), Yang Fu-Hua(杨富华), and Wang Liang-Chen(王良臣). Chin. Phys. B, 2006, 15(10): 2422-2426.
No Suggested Reading articles found!