Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(5): 057305    DOI: 10.1088/1674-1056/a67e9c
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Dynamics of entropic uncertainty for three types of three-level atomic systems under the random telegraph noise

Xiong Xu(许雄), Mao-Fa Fang(方卯发)
Synergetic Innovation Center for Quantum Effects and Applications, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, School of Physics and Electronics, Hunan Normal University, Changsha 410081, China
Abstract  We study the dynamics of the entropic uncertainty for three types of three-level atomic systems coupled to an environment modeled by random matrices. The results show that the entropic uncertainty in the Ξ-type atomic system is lower than that in the V-type atomic system which is exactly the same as that in the Λ-type atomic system. In addition, the effect of relative coupling strength on entropic uncertainty is opposite in Markov region and non-Markov region, and the influence of a common environment and independent environments in Markov region and non-Markov region is also opposite. One can reduce the entropic uncertainty by decreasing relative coupling strength or placing the system in two separate environments in the Markov case. In the non-Markov case, the entropic uncertainty can be reduced by increasing the relative coupling strength or by placing the system in a common environment.
Keywords:  entropic uncertainty      three-level atom      random telegraph noise  
Received:  05 February 2020      Revised:  03 March 2020      Accepted manuscript online: 
PACS:  73.63.Nm (Quantum wires)  
  03.67.Hk (Quantum communication)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  85.35.Be (Quantum well devices (quantum dots, quantum wires, etc.))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11374096).
Corresponding Authors:  Mao-Fa Fang     E-mail:  mffang@hunnu.edu.cn

Cite this article: 

Xiong Xu(许雄), Mao-Fa Fang(方卯发) Dynamics of entropic uncertainty for three types of three-level atomic systems under the random telegraph noise 2020 Chin. Phys. B 29 057305

[1] Heisenberg W 1927 Z. Phys. 43 172
[2] Robertson H P 1929 Phys. Rev. 34 163
[3] Maassen H and Uffink J 1988 Phys. Rev. Lett. 60 1103
[4] Renes J and Boileau J 2008 Phys. Rev. A 78 032335
[5] Renes J and Boileau J 2009 Phys. Rev. Lett. 103 020402
[6] Berta M, Christandl M, Colbeck R, Renes J M and Renner R 2010 Nat. Phys. 6 659
[7] Li C F, Xu J S, Xu X Y, Li K and Guo G C 2011 Nat. Phys. 7 752
[8] Nataf P, Dogan M and Hur K L 2012 Phys. Rev. A 86 043807
[9] Tomamichel M, Lim C C, Gisin N and Renner R 2012 Nat. Commun. 3 634
[10] Dupuis F, Fawzi O and Wehner S 2015 IEEE Trans. Inf. Theory 61 1093
[11] Hu M L and Fan H 2013 Phys. Rev. A 87 022314
[12] Hu M L and Fan H 2013 Phys. Rev. A 88 014105
[13] Zou H M, Fang M F, Yang B Y, Guo Y N, He W and Zhang S Y 2014 Phys. Scr. 89 115101
[14] Coles P J and Piani M 2014 Phys. Rev. A 89 010302
[15] Hall M and Wiseman H 2012 New J. Phys. 14 033040
[16] Prevedel R, Hamel D R, Colbeck R, Fisher K and Resch K J 2011 Nat. Phys. 7 757
[17] Hu M and Fan H 2012 Phys. Rev. A 86 032338
[18] Zhang Y, Fang M, Kang G and Zhou Q 2018 Quantum Inf. Process. 17 172
[19] Xu Z Y, Yang W L and Feng M 2012 Phys. Rev. A 86 012113
[20] Ming F, Wang D, Shi W N, Huang A J, Sun W Y and Ye L 2018 Quantum Inf. Process. 17 89
[21] Huang A J, Wang D, Wang J M, Shi J D, Sun W Y and Ye L 2017 Quantum Inf. Process. 16 204
[22] Feng J, Zhang Y Z, Gould M D and Fan H 2013 Phys. Lett. B 726 527
[23] Jia L J, Tian Z H and Jing J L 2015 Ann. Phys. 353 37
[24] Zheng X and Zhang G F 2016 Quantum Inf. Process. 16 1
[25] Guo Y N, Fang M F and Zeng K 2018 Quantum Inf. Process. 17 187
[26] Guo Y N, Fang M F, Tian Q L, Li Z D and Zeng K 2018 Laser Phys. Lett. 15 105205
[27] Mair A, Vaziri A, Weihs G and Zeilinger A 2001 Nature 412 313
[28] Fickler R, Lapkiewicz R, Huber M, Lavery M P, Padgett M J and Zeilinger A 2014 Nat. Commun. 5 4502
[29] Molina-Terriza G, Vaziri A, Ursin R and Zeilinger A 2005 Phys. Rev. Lett. 94 040501
[30] Inoue R, Yonehara T, Miyamoto Y, Koashi M and Kozuma M 2009 Phys. Rev. Lett. 103 110503
[31] Walborn S P, Lemelle D S, Almeida M P and Ribeiro P H S 2006 Phys. Rev. Lett. 96 090501
[32] Galperin Y M, Altshuler B L, Bergli J, and Shantsev D V 2006 Phys. Rev. Lett. 96 097009
[33] Abel B and Marquardt F 2008 Phys. Rev. B 78 201302
[34] Joynt R, Zhou D and Wang Q H 2011 Int. J. Mod. Phys. B 25 2115
[35] Rossi M A C and Paris M G A 2016 J. Chem. Phys. 144 024113
[36] Benedetti C, Buscemi F, Bordone P and Paris M G A 2013 Phys. Rev. A 87 052328
[37] Paladino E, Galperin Y M, Falci G and Altshuler B L 2014 Rev. Mod. Phys. 86 361
[38] Carrera M, Gorin T and Pineda C 2019 Phys. Rev. A 100 042322
[39] Arthur T T, Martin T and Fai L C 2017 Int. J. Quantum Inf. 15 1750047
[40] Arthur T T, Martin T and Fai L C 2018 Quantum Inf. Process. 17 37
[1] Quantum correlation and entropic uncertainty in a quantum-dot system
Ying-Yue Yang(杨颖玥), Li-Juan Li(李丽娟), Liu Ye(叶柳), and Dong Wang(王栋). Chin. Phys. B, 2022, 31(10): 100303.
[2] Controlling the entropic uncertainty and quantum discord in two two-level systems by an ancilla in dissipative environments
Rong-Yu Wu(伍容玉) and Mao-Fa Fang(方卯发). Chin. Phys. B, 2021, 30(3): 037302.
[3] Steady and optimal entropy squeezing for three types of moving three-level atoms coupled with a single-mode coherent field
Wen-Jin Huang(黄文进) and Mao-Fa Fang(方卯发). Chin. Phys. B, 2021, 30(1): 010304.
[4] Entropy squeezing for a V-type three-level atom interacting with a single-mode field and passing through the amplitude damping channel with weak measurement
Cui-Yu Zhang(张翠玉) and Mao-Fa Fang(方卯发). Chin. Phys. B, 2021, 30(1): 010303.
[5] Entropy squeezing for three-level atom interacting with a single-mode field
Fei-Fan Liu(刘非凡), Mao-Fa Fang(方卯发), Xiong Xu(许雄). Chin. Phys. B, 2019, 28(6): 060304.
[6] Random telegraph noise on the threshold voltage of multi-level flash memory
Yiming Liao(廖轶明), Xiaoli Ji(纪小丽), Yue Xu(徐跃), Chengxu Zhang(张城绪), Qiang Guo(郭强), Feng Yan(闫锋). Chin. Phys. B, 2017, 26(1): 018502.
[7] Dynamics of a three-level V-type atom driven by a cavity photon and microwave field
Yan-Li Xue(薛艳丽), Shi-Deng Zhu(朱诗灯), Ju Liu(刘菊), Ting-Hui Xiao(肖廷辉), Bao-Hua Feng(冯宝华), Zhi-Yuan Li(李志远). Chin. Phys. B, 2016, 25(4): 044203.
[8] Reduction of entropic uncertainty in entangled qubits system by local JJ-symmetric operation
Zhang Shi-Yang (张诗阳), Fang Mao-Fa (方卯发), Zhang Yan-Liang (张延亮), Guo You-Neng (郭有能), Zhao Yan-Jun (赵艳君), Tang Wu-Wei (唐武伟). Chin. Phys. B, 2015, 24(9): 090304.
[9] Spontaneous emission of “polarized” V-type three-level atoms strongly coupled with an optical cavity
Xue Yan-Li (薛艳丽), Zhu Shi-Deng (朱诗灯), Li Jia-Fang (李家方), Ding Wei (丁伟), Feng Bao-Hua (冯宝华), Li Zhi-Yuan (李志远). Chin. Phys. B, 2015, 24(3): 034202.
[10] Emission spectrum of a harmonically trapped Λ-type three-level atom
Guo Hong (郭红), Tang Pei (汤佩). Chin. Phys. B, 2013, 22(5): 054204.
[11] Electromagnetically induced transparency of single Λ-type three-level atom in high-finesse optical cavity
Sun Yan-Fen (孙燕芬), Tan Lei (谭磊), Xu Yan (徐岩). Chin. Phys. B, 2013, 22(3): 030309.
[12] Generation of steady four-atom decoherence-free states via quantum-jump-based feedback
Wu Qi-Cheng (吴奇成), Ji Xin (计新). Chin. Phys. B, 2013, 22(10): 100308.
[13] Demonstration of the approximation of eliminating atomic excited populations in an atom–cavity system
Zhang Yu-Qing(张玉青), Huang Gang(黄刚), and Tan Lei(谭磊) . Chin. Phys. B, 2012, 21(2): 023701.
[14] Mechanical effects of light on the $\Xi$-type three-level atom in a high-finesse optical cavity
Liu Li-Wei(刘利伟), Tan Lei(谭磊), and Huang Gang(黄刚) . Chin. Phys. B, 2011, 20(1): 014205.
[15] Relative carrier-envelope phase dependence of resonant propagation of two-colour femtosecond pulses in V-type atomic medium
Tan Xia(谭霞), Wang Zhen-Dong(王振东), Wang Lei(王蕾), and Fan Xi-Jun(樊锡君). Chin. Phys. B, 2010, 19(6): 064211.
No Suggested Reading articles found!