ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Light slowing and all-optical time division multiplexing of hybrid four-wave mixing signal in nitrogen-vacancy center |
Ruimin Wang(王瑞敏)1, Irfan Ahmed2,3, Faizan Raza1, Changbiao Li(李昌彪)1, Yanpeng Zhang(张彦鹏)1,2 |
1 School of Science&Key Laboratory for Physical Electronics and Devices of the Ministry of Education&Shaanxi Key Laboratory of Information Photonic Technique, Xi'an Jiaotong University, Xi'an 710049, China; 2 Department of Physics, City University of Hong Kong, Kowloon, Hong Kong SAR, China; 3 Electrical Engineering Department, Sukkur IBA University, 65200, Sindh, Pakistan |
|
|
Abstract We report the experimental results of hybrid four-wave mixing and fluorescence signals from nitrogen-vacancy (NV) centers in diamond. The fluorescence signals are slowed owing to dark state. The observed delay time of light slowing due to interconversion between NV- and NV0 is about 6.4 μs. The relative intensities of read-out signals change with the wavelength and power of writing pulse. Based on light slowing, we present the model of all-optical time division multiplexing. The intensity ratio in different demultiplexed channels is modulated by the wavelength and power of control field. It has potential applications in quantum communication and all-optical network.
|
Received: 16 November 2019
Revised: 15 January 2020
Accepted manuscript online:
|
PACS:
|
42.65.-k
|
(Nonlinear optics)
|
|
42.79.Sz
|
(Optical communication systems, multiplexers, and demultiplexers?)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0303700 and 2018YFA0307500) and the National Natural Science Foundation of China (Grant Nos. 61605154, 11604256, and 11804267). |
Corresponding Authors:
Ruimin Wang, Yanpeng Zhang
E-mail: wangrm@mail.xjtu.edu.cn;ypzhang@mail.xjtu.edu.cn
|
Cite this article:
Ruimin Wang(王瑞敏), Irfan Ahmed, Faizan Raza, Changbiao Li(李昌彪), Yanpeng Zhang(张彦鹏) Light slowing and all-optical time division multiplexing of hybrid four-wave mixing signal in nitrogen-vacancy center 2020 Chin. Phys. B 29 054204
|
[1] |
Maurer P C, Kucsko G, Latta C, Jiang L, Yao N Y, Bennett S D, Pastawski F, Hunger D, Chisholm N, Markham M, Twitchen D J, Ciac J I and Lukin M D 2012 Science 336 1283
|
[2] |
Balasubramanian G, Neumann P, Twitchen D, Markham M, Kolesov R, Mizuoschi N, Isoya J, Achard J, Beck J, Tissler J, Jacques V, Hemmer P R, Jelezko F and Wrachtrup J 2009 Nat. Mater. 8 383
|
[3] |
Goldman M L, Sipahigil A, Doherty M W, Yao N Y, Bennett S D, Markham M, Twitchen D J, Manson N B, Kubanek A and Lukin M D 2015 Phys. Rev. Lett. 114 145502
|
[4] |
Goldman M L, Doherty M W, Sipahigil A, Yao N Y, Bennett S D, Manson N B, Kubanek A and Lukin M D 2015 Phys. Rev. B 91 165201
|
[5] |
Manson N B, Harrison J P and Sellars M J 2006 Phys. Rev. B 74 104303
|
[6] |
Han K Y, K I M S K, Eggeling C and Hell S W 2010 Nano Lett. 10 3199
|
[7] |
Waldherr G, Beck J, Steiner M, Neumann P, Gali A, Frauenheim Th, Jelezko F and Wrachtrup J 2011 Phys. Rev. Lett. 106 157601
|
[8] |
Siyushev P, Pinto H, Voros M, Gali A, Jelezko F and Wrachtrup J 2013 Phys. Rev. Lett. 110 167402
|
[9] |
Chen X D, Zou C L, Sun F W and Guo G C 2013 Appl. Phys. Lett. 103 013112
|
[10] |
Dutt M V G, Childress L, Jiang E T L, Maze J, Jelezko F, Zibrov A S, Hemmer P R and Lukin M D 2007 Science 316 1312
|
[11] |
Maze J R, Stanwix P L, Hodges J S, Hong S, Taylor J M, Cappellaro P, Jiang L, Dutt M V G, Togan E, Zibrov A S, Yacoby A, Walsworth R L and Lukin M D 2008 Nature 455 644
|
[12] |
Shang Y X, Hong F, Dai J H, Yu H, Lu Y N, Liu E K, Yu X H, Liu G Q and Pan X Y 2019 Chin. Phys. Lett. 36 086201
|
[13] |
Ye J F, Jiao Z, Ma K, Huang Z Y, Lv H J and Jiang F J 2019 Chin. Phys. B 28 047601
|
[14] |
Li S, Li C H, Zhao B W, Dong Y, Li C C, Chen X D, Ge Y S and Sun F W 2017 Chin. Phys. Lett. 34 096101
|
[15] |
Wang H H, Fan Y F, Wang R, Wang L, Du D M, Kang Z H, Jiang Y, Wu J H and Gao J Y 2009 Opt. Lett. 34 2596
|
[16] |
Riesen N, Pan X Z, Badek K, Ruan Y L, Monro T M, Zhao J B, Heidepriem H E and Riesen H 2018 Opt. Express 26 12266
|
[17] |
Wang R M, Pargorn P, Raza F, Ahme I, Wang H X and Zhang Y P 2018 Laser Phys. Lett. 15 085401
|
[18] |
Du S W, Wen J M, Rubin M H and Yin G Y 2007 Phys. Rev. Lett. 98 053601
|
[19] |
Du S W, Oh Eun, Wen J M and Rubin M H 2007 Phys. Rev. B 76 013803
|
[20] |
Aslam N, Waldherr G, Neumann P, Jelezko F and Wrachtrup J 2013 New J. Phys. 15 013064
|
[21] |
Han K Y, Wildanger D, Rittweger E, Meijer J, Pezzagna S, Hell S W and Eggeling C 2012 New J. Phys. 14 123002
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|