ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Cascaded optical frequency transfer over 500-km fiber link using regenerative amplifier |
Xue Deng(邓雪)1,2,3, Dong-Dong Jiao(焦东东)1,2,3, Jie Liu(刘杰)1,3, Qi Zang(臧琦)1,2,3, Xiang Zhang(张翔)1,2,3, Dan Wang(王丹)1,3, Jing Gao(高静)1,2,3, Rui-Fang Dong(董瑞芳)1,2,3, Tao Liu(刘涛)1,3, Shou-Gang Zhang(张首刚)1,2,3 |
1 National Time Service Centre, Chinese Academy of Sciences, Xi'an 710600, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China; 3 Key Laboratory of Time and Frequency Standards, Chinese Academy of Sciences, Xi'an 710600, China |
|
|
Abstract We demonstrate a 300-km+200-km cascaded coherent phase transfer via fiber link. The transfer is divided into a 300-km span and a 200-km span with independent phase locking loops, aiming to extend the phase control bandwidth of the whole link. The phase noise and transfer instability of the cascaded transmission are investigated and compared with those in the case of a single-span 500-km transfer. We achieve the transfer instabilities of 1.8×10-14 at 1 s, 8.9×10-20 at 104 s for the 300-km +200-km cascaded transmission, and 2.7×10-14 at 1 s for the 500-km single-span transfer.
|
Received: 11 November 2019
Revised: 13 January 2020
Accepted manuscript online:
|
PACS:
|
42.79.Sz
|
(Optical communication systems, multiplexers, and demultiplexers?)
|
|
06.30.Ft
|
(Time and frequency)
|
|
42.62.-b
|
(Laser applications)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFF0200200), the National Natural Science Foundation of China (Grant Nos. 91636101, 91836301, and 11803041), the West Light Foundation of the Chinese Academy of Sciences (Grant No. XAB2016B47), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB21000000). |
Corresponding Authors:
Tao Liu
E-mail: taoliu@ntsc.ac.cn
|
Cite this article:
Xue Deng(邓雪), Dong-Dong Jiao(焦东东), Jie Liu(刘杰), Qi Zang(臧琦), Xiang Zhang(张翔), Dan Wang(王丹), Jing Gao(高静), Rui-Fang Dong(董瑞芳), Tao Liu(刘涛), Shou-Gang Zhang(张首刚) Cascaded optical frequency transfer over 500-km fiber link using regenerative amplifier 2020 Chin. Phys. B 29 054205
|
[1] |
Parthey Ch G, Matveev A, Alnis J, Bernhardt B, Beyer A, Holzwarth R, Maistrou A, Pohl R, Predehl K, Udem Th, Wilken T, Kolachevsky N, Abgrall M, Rovera D, Salomon Ch, Laurent Ph and Hänsch Th W 2011 Phys. Rev. Lett. 107 203001
|
[2] |
Schiller S, Tino G M, Gill P, Salomon C, Sterr U, Peik E, Nevsky A, Görlitz A, Svehla D, Ferrari G, Poli N, Lusanna L, Klein H, Margolis H and Lemonde P 2009 Exp. Astron. 23 573
|
[3] |
Grotti J, Koller S, Vogt S, et al. 2018 Nat. Phys. 14 437
|
[4] |
Chou C W, Hume D B, Rosenband T and Wineland D J 2010 Science 329 1630
|
[5] |
Riehle F 2017 Nat. Photon. 11 25
|
[6] |
Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L and Ye J 2014 Nature 506 71
|
[7] |
Campbell S L, Hutson R B, Marti G E, Goban A, Darkwah Oppong N, McNally R L, Sonderhouse L, Robinson J M, Zhang W, Bloom B J and Ye J 2017 Science 358 90
|
[8] |
Chiodo N, Quintin, Stefani F, Wiotte F, Camisard E, Chardonnet Ch, Santarelli G, Klein A A, Pottie P E and Lopez O 2015 Opt. Express 23 33927
|
[9] |
Ma L S, Jungner P, Ye J and Hall J L 1994 Opt. Lett. 19 1777
|
[10] |
Newbury N R, Williams P A and Swann W C 2007 Opt. Lett. 32 3056
|
[11] |
Lopez O, Chiodo N, Stefani F, Wiotte F, Quintin N, Bercy A, Chardonnet Ch, Santarelli G, Pottie P E and Klein A A 2010 Opt. Express 18 16849
|
[12] |
Ma C Q, Wu L F, JiangY Y, Yu H F, Bi Z Y and Ma L S 2015 Appl. Phys. Lett. 107 261109
|
[13] |
Deng X, Liu J, Jiao D D, Gao J, Zang Q, Xu G J, Dong R F, Liu T and Zhang S G 2016 Chin. Phys. Lett. 33 114202
|
[14] |
Grosche G, Terra O, Predehl K, Holzwarth R, Lipphardt B, Vogt F, Sterr U and Schnatz H 2009 Opt. Lett. 34 2270
|
[15] |
Cheng N, Chen W, Liu Q, Xu D, Yang F, Gui Y Z and Cai H W 2016 Chin. Phys. B 25 014206
|
[16] |
Droste S, Predehl K, Hänsch T W, Udem Th, Holzwarth R, Raupach S M F, Ozimek F, Schnatz H and Grosche G 2013 Phys. Rev. Lett. 111 110801
|
[17] |
Jiao D D, Gao J, Liu J, Deng X, Xu G J, Chen J, Dong R F, Liu T and Zhang Sh G 2015 Acta Phys. Sin. 64 190601 (in Chinese)
|
[18] |
Deng X, Liu J, Zang Q, Jiao D D, Gao J, Zhang X, Wang D, Dong R F and Liu T 2018 Appl. Opt. 57 9620
|
[19] |
Musha M, Hong F L, Nakagawa K and Ueda K 2008 Opt. Express 16 16459
|
[20] |
Fujieda M, Kumagai M and Nagano S 2010 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57 168
|
[21] |
Cutler L and Searle C 1966 Proc. IEEE 54 136
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|