Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(5): 054205    DOI: 10.1088/1674-1056/ab7b4f
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Cascaded optical frequency transfer over 500-km fiber link using regenerative amplifier

Xue Deng(邓雪)1,2,3, Dong-Dong Jiao(焦东东)1,2,3, Jie Liu(刘杰)1,3, Qi Zang(臧琦)1,2,3, Xiang Zhang(张翔)1,2,3, Dan Wang(王丹)1,3, Jing Gao(高静)1,2,3, Rui-Fang Dong(董瑞芳)1,2,3, Tao Liu(刘涛)1,3, Shou-Gang Zhang(张首刚)1,2,3
1 National Time Service Centre, Chinese Academy of Sciences, Xi'an 710600, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Key Laboratory of Time and Frequency Standards, Chinese Academy of Sciences, Xi'an 710600, China
Abstract  We demonstrate a 300-km+200-km cascaded coherent phase transfer via fiber link. The transfer is divided into a 300-km span and a 200-km span with independent phase locking loops, aiming to extend the phase control bandwidth of the whole link. The phase noise and transfer instability of the cascaded transmission are investigated and compared with those in the case of a single-span 500-km transfer. We achieve the transfer instabilities of 1.8×10-14 at 1 s, 8.9×10-20 at 104 s for the 300-km +200-km cascaded transmission, and 2.7×10-14 at 1 s for the 500-km single-span transfer.
Keywords:  optical frequency      fiber link      transfer  
Received:  11 November 2019      Revised:  13 January 2020      Accepted manuscript online: 
PACS:  42.79.Sz (Optical communication systems, multiplexers, and demultiplexers?)  
  06.30.Ft (Time and frequency)  
  42.62.-b (Laser applications)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFF0200200), the National Natural Science Foundation of China (Grant Nos. 91636101, 91836301, and 11803041), the West Light Foundation of the Chinese Academy of Sciences (Grant No. XAB2016B47), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB21000000).
Corresponding Authors:  Tao Liu     E-mail:  taoliu@ntsc.ac.cn

Cite this article: 

Xue Deng(邓雪), Dong-Dong Jiao(焦东东), Jie Liu(刘杰), Qi Zang(臧琦), Xiang Zhang(张翔), Dan Wang(王丹), Jing Gao(高静), Rui-Fang Dong(董瑞芳), Tao Liu(刘涛), Shou-Gang Zhang(张首刚) Cascaded optical frequency transfer over 500-km fiber link using regenerative amplifier 2020 Chin. Phys. B 29 054205

[1] Parthey Ch G, Matveev A, Alnis J, Bernhardt B, Beyer A, Holzwarth R, Maistrou A, Pohl R, Predehl K, Udem Th, Wilken T, Kolachevsky N, Abgrall M, Rovera D, Salomon Ch, Laurent Ph and Hänsch Th W 2011 Phys. Rev. Lett. 107 203001
[2] Schiller S, Tino G M, Gill P, Salomon C, Sterr U, Peik E, Nevsky A, Görlitz A, Svehla D, Ferrari G, Poli N, Lusanna L, Klein H, Margolis H and Lemonde P 2009 Exp. Astron. 23 573
[3] Grotti J, Koller S, Vogt S, et al. 2018 Nat. Phys. 14 437
[4] Chou C W, Hume D B, Rosenband T and Wineland D J 2010 Science 329 1630
[5] Riehle F 2017 Nat. Photon. 11 25
[6] Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L and Ye J 2014 Nature 506 71
[7] Campbell S L, Hutson R B, Marti G E, Goban A, Darkwah Oppong N, McNally R L, Sonderhouse L, Robinson J M, Zhang W, Bloom B J and Ye J 2017 Science 358 90
[8] Chiodo N, Quintin, Stefani F, Wiotte F, Camisard E, Chardonnet Ch, Santarelli G, Klein A A, Pottie P E and Lopez O 2015 Opt. Express 23 33927
[9] Ma L S, Jungner P, Ye J and Hall J L 1994 Opt. Lett. 19 1777
[10] Newbury N R, Williams P A and Swann W C 2007 Opt. Lett. 32 3056
[11] Lopez O, Chiodo N, Stefani F, Wiotte F, Quintin N, Bercy A, Chardonnet Ch, Santarelli G, Pottie P E and Klein A A 2010 Opt. Express 18 16849
[12] Ma C Q, Wu L F, JiangY Y, Yu H F, Bi Z Y and Ma L S 2015 Appl. Phys. Lett. 107 261109
[13] Deng X, Liu J, Jiao D D, Gao J, Zang Q, Xu G J, Dong R F, Liu T and Zhang S G 2016 Chin. Phys. Lett. 33 114202
[14] Grosche G, Terra O, Predehl K, Holzwarth R, Lipphardt B, Vogt F, Sterr U and Schnatz H 2009 Opt. Lett. 34 2270
[15] Cheng N, Chen W, Liu Q, Xu D, Yang F, Gui Y Z and Cai H W 2016 Chin. Phys. B 25 014206
[16] Droste S, Predehl K, Hänsch T W, Udem Th, Holzwarth R, Raupach S M F, Ozimek F, Schnatz H and Grosche G 2013 Phys. Rev. Lett. 111 110801
[17] Jiao D D, Gao J, Liu J, Deng X, Xu G J, Chen J, Dong R F, Liu T and Zhang Sh G 2015 Acta Phys. Sin. 64 190601 (in Chinese)
[18] Deng X, Liu J, Zang Q, Jiao D D, Gao J, Zhang X, Wang D, Dong R F and Liu T 2018 Appl. Opt. 57 9620
[19] Musha M, Hong F L, Nakagawa K and Ueda K 2008 Opt. Express 16 16459
[20] Fujieda M, Kumagai M and Nagano S 2010 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57 168
[21] Cutler L and Searle C 1966 Proc. IEEE 54 136
[1] Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
You-Ming Liu(刘又铭), Yuan-Kun Shi(史源坤), Ban-Fei Wan(万宝飞), Dan Zhang(张丹), and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044203.
[2] Fast population transfer with a superconducting qutrit via non-Hermitian shortcut to adiabaticity
Xin-Ping Dong(董新平), Zhi-Bo Feng(冯志波), Xiao-Jing Lu(路晓静), Ming Li(李明), and Zheng-Yin Zhao(赵正印). Chin. Phys. B, 2023, 32(3): 034201.
[3] Effect of bio-tissue deformation behavior due to intratumoral injection on magnetic hyperthermia
Yundong Tang(汤云东), Jian Zou(邹建), Rodolfo C.C. Flesch, and Tao Jin(金涛). Chin. Phys. B, 2023, 32(3): 034304.
[4] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[5] Engineering topological state transfer in four-period Su-Schrieffer-Heeger chain
Xi-Xi Bao(包茜茜), Gang-Feng Guo(郭刚峰), and Lei Tan(谭磊). Chin. Phys. B, 2023, 32(2): 020301.
[6] MoS2/Si tunnel diodes based on comprehensive transfer technique
Yi Zhu(朱翊), Hongliang Lv(吕红亮), Yuming Zhang(张玉明), Ziji Jia(贾紫骥), Jiale Sun(孙佳乐), Zhijun Lyu(吕智军), and Bin Lu(芦宾). Chin. Phys. B, 2023, 32(1): 018501.
[7] Concerted versus stepwise mechanisms of cyclic proton transfer: Experiments, simulations, and current challenges
Yi-Han Cheng(程奕涵), Yu-Cheng Zhu(朱禹丞), Xin-Zheng Li(李新征), and Wei Fang(方为). Chin. Phys. B, 2023, 32(1): 018201.
[8] Heat transport properties within living biological tissues with temperature-dependent thermal properties
Ying-Ze Wang(王颖泽), Xiao-Yu Lu(陆晓宇), and Dong Liu(刘栋). Chin. Phys. B, 2023, 32(1): 014401.
[9] How graph features decipher the soot assisted pigmental energy transport in leaves? A laser-assisted thermal lens study in nanobiophotonics
S Sankararaman. Chin. Phys. B, 2022, 31(8): 088201.
[10] Numerical study of converting beat-note signals of dual-frequency lasers to optical frequency combs by optical injection locking of semiconductor lasers
Chenhao Liu(刘晨浩), Haoshu Jin(靳昊澍), Hui Liu(刘辉), and Jintao Bai(白晋涛). Chin. Phys. B, 2022, 31(8): 084205.
[11] Precise determination of characteristic laser frequencies by an Er-doped fiber optical frequency comb
Shiying Cao(曹士英), Yi Han(韩羿), Yongjin Ding(丁永今), Baike Lin(林百科), and Zhanjun Fang(方占军). Chin. Phys. B, 2022, 31(7): 074207.
[12] Generation of stable and tunable optical frequency linked to a radio frequency by use of a high finesse cavity and its application in absorption spectroscopy
Yueting Zhou(周月婷), Gang Zhao(赵刚), Jianxin Liu(刘建鑫), Xiaojuan Yan(闫晓娟), Zhixin Li(李志新), Weiguang Ma(马维光), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(6): 064206.
[13] Evolution of surfaces and mechanisms of contact electrification between metals and polymers
Lin-Feng Wang(王林锋), Yi Dong(董义), Min-Hao Hu(胡旻昊), Jing Tao(陶静), Jin Li(李进), and Zhen-Dong Dai(戴振东). Chin. Phys. B, 2022, 31(6): 066202.
[14] Accurate prediction of the critical heat flux for pool boiling on the heater substrate
Fengxun Hai(海丰勋), Wei Zhu(祝薇), Xiaoyi Yang(杨晓奕), and Yuan Deng(邓元). Chin. Phys. B, 2022, 31(6): 064401.
[15] Computational design of ratiometric two-photon fluorescent Zn2+ probes based on quinoline and di-2-picolylamine moieties
Zhe Shao(邵哲), Wen-Ying Zhang(张纹莹), and Ke Zhao(赵珂). Chin. Phys. B, 2022, 31(5): 053302.
No Suggested Reading articles found!