INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Low-temperature plasma enhanced atomic layer deposition of large area HfS2 nanocrystal thin films |
Ailing Chang(常爱玲)1, Yichen Mao(毛亦琛)1, Zhiwei Huang(黄志伟)2, Haiyang Hong(洪海洋)1, Jianfang Xu(徐剑芳)1, Wei Huang(黄巍)1, Songyan Chen(陈松岩)1, Cheng Li(李成)1 |
1 Department of Physics, OSED, Semiconductor Photonics Research Center, Xiamen University, Xiamen 361005, China; 2 Xiamen University Tan Kah Kee College, Zhangzhou 363105, China |
|
|
Abstract Hafnium disulfide (HfS2) is a promising two-dimensional material for scaling electronic devices due to its higher carrier mobility, in which the combination of two-dimensional materials with traditional semiconductors in the framework of CMOS-compatible technology is necessary. We reported on the deposition of HfS2 nanocrystals by remote plasma enhanced atomic layer deposition at low temperature using Hf(N(CH3)(C2H5))4 and H2S as the reaction precursors. Self-limiting reaction behavior was observed at the deposition temperatures ranging from 150℃ to 350℃, and the film thickness increased linearly with the growth cycles. The uniform HfS2 nanocrystal thin films were obtained with the size of nanocrystal grain up to 27 nm. It was demonstrated that higher deposition temperature could enlarge the grain size and improve the HfS2 crystallinity, while causing crystallization of the mixed HfO2 above 450℃. These results suggested that atomic layer deposition is a low-temperature route to synthesize high quality HfS2 nanocrystals for electronic device or electrochemical applications.
|
Received: 10 December 2019
Revised: 09 January 2020
Accepted manuscript online:
|
PACS:
|
81.07.Bc
|
(Nanocrystalline materials)
|
|
81.15.Gh
|
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFB2200103). |
Corresponding Authors:
Cheng Li
E-mail: lich@xmu.edu.cn
|
Cite this article:
Ailing Chang(常爱玲), Yichen Mao(毛亦琛), Zhiwei Huang(黄志伟), Haiyang Hong(洪海洋), Jianfang Xu(徐剑芳), Wei Huang(黄巍), Songyan Chen(陈松岩), Cheng Li(李成) Low-temperature plasma enhanced atomic layer deposition of large area HfS2 nanocrystal thin films 2020 Chin. Phys. B 29 038102
|
[1] |
Butler S Z, Hollen S M, Cao L, Cui Y, Gupta J A, Gutiérrez H R, Heinz T F, Hong S S, Huang J, Ismach A F, Johnston-Halperin E, Kuno M, Plashnitsa V V, Robinson R D, Ruoff R S, Salahuddin S, Shan J, Shi L, Spencer M G, Terrones M, Windl W and Goldberger J E 2013 ACS Nano 7 2898
|
[2] |
Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
|
[3] |
Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 Nat. Rev. Mater. 2 17033
|
[4] |
Choi W, Choudhary N, Han G H, Park J, Akinwande D and Lee Y H 2017 Mater. Today 20 116
|
[5] |
Duong D L, Yun S J and Lee Y H 2017 ACS Nano 11 11803
|
[6] |
Kanazawa T, Amemiya T, Ishikawa A, Upadhyaya V, Tsuruta K, Tanaka T and Miyamoto Y 2016 Sci. Rep. 6 22277
|
[7] |
Mirabelli G, McGeough C, Schmidt M, McCarthy E K, Monaghan S, Povey I M, McCarthy M, Gity F, Nagle R, Hughes G, Cafolla A, Hurley P K and Duffy R 2016 J. Appl. Phys. 120 125102
|
[8] |
Chae S H, Jin Y, Kim T S, Chung D S, Na H, Nam H, Kim H, Perello D J, Jeong H Y, Ly T H and Lee Y H 2016 ACS Nano 10 1309
|
[9] |
Wang D, Zhang X and Wang Z 2018 J. Nanosci. Nanotechnol. 18 7319
|
[10] |
Yan C, Gan L, Zhou X, Guo J, Huang W, Huang J, Jin B, Xiong J, Zhai T and Li Y 2017 Adv. Funct. Mater. 27 1702918
|
[11] |
Wang D, Zhang X, Liu H, Meng J, Xia J, Yin Z, Wang Y, You J and Meng X M 2017 2D Mater. 4 031012
|
[12] |
Fu L, Wang F, Wu B, Wu N, Huang W, Wang H, Jin C, Zhuang L, He J, Fu L and Liu Y 2017 Adv. Mater. 29 1700439
|
[13] |
Kaur H, Yadav S, Srivastava A K, Singh N, Rath S, Schneider J J, Sinha O P and Srivastava R 2018 Nano Res. 11 343
|
[14] |
Zheng B, Chen Y, Wang Z, Qi F, Huang Z, Hao X, Li P, Zhang W and Li Y 2016 2D Mater. 3 035024
|
[15] |
Wang D, Meng J, Zhang X, Guo G, Yin Z, Liu H, Cheng L, Gao M, You J and Wang R 2018 Chem. Mater. 30 3819
|
[16] |
Zheng B, Wang Z, Qi F, Wang X, Yu B, Zhang W and Chen Y 2018 Appl. Surf. Sci. 435 563
|
[17] |
Brooks D J, Douthwaite R E, Brydson R, Calvert C, Measures M G and Watson A 2006 Nanotechnology 17 1245
|
[18] |
Oh S, Kim J B, Song J T, Oh J and Kim S H 2017 J. Mater. Chem. A 5 3304
|
[19] |
Huang Y, Liu L and Liu X 2019 Nanotechnology 30 95402
|
[20] |
Nandi D K, Sen U K, Choudhury D, Mitra S and Sarkar S K 2014 Electrochim. Acta 146 706
|
[21] |
Jin Z, Shin S, Kwon D H, Han S J and Min Y S 2014 Nanoscale 6 14453
|
[22] |
Kwon D H, Jin Z, Shin S, Lee W S and Min Y S 2016 Nanoscale 8 7180
|
[23] |
Xiong D, Zhang Q, Li W, Li J, Fu X, Cerqueira M F, Alpuim P and Liu L 2017 Nanoscale 9 2711
|
[24] |
Kim H J, Jeon H and Shin Y H 2018 J. Appl. Phys. 124 115301
|
[25] |
Shimizu J, Ohashi T, Matsuura K, Muneta I, Kuniyuki K, Tsutsui K, Ikarashi N and Wakabayashi H 2019 IEEE J. Electron. Devices Soc. 7 76
|
[26] |
Hao W, Marichy C and Journet C 2019 2D Mater. 6 012001
|
[27] |
Groven B, Mehta A N, Bender H, Smets Q, Meersschaut J, Franquet A, Conard T, Nuytten T, Verdonck P, Vandervorst W, Heyns M, Radu I, Caymax M and Delabie A 2018 J. Vac. Sci. Technol. A Vac. Surf. Film 36 01A105
|
[28] |
Wu Y, Raza M H, Chen Y C, Amsalem P, Wahl S, Skrodczky K, Xu X, Lokare K S, Zhukush M, Gaval P, Koch N, Quadrelli E A and Pinna N 2019 Chem. Mater. 31 1881
|
[29] |
Yeo S, Nandi D K, Rahul R, Kim T H, Shong B, Jang Y, Bae J S, Han J W, Kim S H and Kim H 2018 Appl. Surf. Sci. 459 596
|
[30] |
Pyeon J J, Baek I H, Lim W C, Chae K H, Han S H, Lee G Y, Baek S H, Kim J S, Choi J W, Chung T M, Han J H, Kang C Y and Kim S K 2018 Nanoscale 10 17712
|
[31] |
Lee N, Lee G, Choi H, Park H, Choi Y, Kim K, Choi Y, Kim J W, Yuk H, Sul O, Lee S B and Jeon H 2019 Appl. Surf. Sci. 496 143689
|
[32] |
Lv J and Liu L 2020 Nanotechnology 31 055602
|
[33] |
Hämäläinen J, Mattinen M, Mizohata K, Meinander K, Vehkamäki M, Räisänen J, Ritala M and Leskelä M 2018 Adv. Mater. 30 1703622
|
[34] |
Mattinen M, Popov G, Vehkamäki M, King P J, Mizohata K, Jalkanen P, Räisänen J, Leskelä M and Ritala M 2019 Chem. Mater. 31 5713
|
[35] |
Chi X, Lan X, Lu C, Hong H, Li C, Chen S, Lai H, Huang W and Xu J 2016 Mater. Res. Express 3 035012
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|